赞
踩
1.Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。图很多,包括多边形面积PAM、分类准确率、灵敏度、特异性、曲线下面积AUC、Kappa系数、F_measure。等等。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2021及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
%% 建立模型
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层
flattenLayer("Name", "flatten") % 网络铺平层
lstmLayer(best_hd, "Name", "lstm", "OutputMode","last") % BiLSTM层
fullyConnectedLayer(num_class, "Name", "fc") % 全连接层
softmaxLayer("Name", "softmax") % softmax激活层
classificationLayer("Name", "classification")]; % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize");
% 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 500,... % 最大训练次数
'InitialLearnRate', best_lr,... % 初始学习率为0.001
'L2Regularization', best_l2,... % L2正则化参数
'LearnRateSchedule', 'piecewise',... % 学习率下降
'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1
'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1
'Shuffle', 'every-epoch',... % 每次训练打乱数据集
'ValidationPatience', Inf,... % 关闭验证
'Plots', 'training-progress',... % 画出曲线
'Verbose', false);
%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。