当前位置:   article > 正文

人工智能之蚁群算法_蚁群算法是人工智能吗

蚁群算法是人工智能吗

蚁群算法简介

蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。

蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。下图显示了这样一个觅食的过程。

J4e4zD.png

在图(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。假如在A和E之间突然出现了一个障碍物(图(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的 信息素(pheromone) ,蚂蚁朝着两个方向行进的概率是相等的。但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。信息素是蚂蚁之间交流的工具之一。它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。很明显,沿着短边的的路径上信息素将会越来越浓(图(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。

TSP问题描述

蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。

TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种NP-hard问题,此类问题用一般的算法是很难得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。

TSP问题(旅行商问题)是指旅行家要旅行n个城市,要求各个城市经历且仅经历一次 然后回到出发城市,并要求所走的路程最短。

一个TSP问题可以表达为:求解遍历图G=(V,E,C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。

蚁群算法原理

假如蚁群中所有蚂蚁的数量为m,所有城市之间的信息素用矩阵pheromone表示,最短路径为bestLength,最佳路径为bestTour。每只蚂蚁都有自己的内存,内存中用一个禁忌表(Tabu)来存储该蚂蚁已经访问过的城市,表示其在以后的搜索中将不能访问这些城市;还有用另外一个允许访问的城市表(Allowed)来存储它还可以访问的城市;另外还用一个矩阵(Delta)来存储它在一个循环(或者迭代)中给所经过的路径释放的信息素;还有另外一些数据,例如一些控制参数(α,β,ρ,Q),该蚂蚁行走玩全程的总成本或距离(tourLength),等等。假定算法总共运行MAX_GEN次,运行时间为t。

蚁群算法计算过程如下:

(1)初始化。

(2)为每只蚂蚁选择下一个节点。

(3)更新信息素矩阵。

(4)检查终止条件

如果达到最大代数MAX_GEN,算法终止,转到第(5)步;否则,重新初始化所有的蚂蚁的Delt矩阵所有元素初始化为0,Tabu表清空,Allowed表中加入所有的城市节点。随机选择它们的起始位置(也可以人工指定)。在Tabu中加入起始节点,Allowed中去掉该起始节点,重复执行(2),(3),(4)步。

(5)输出最优值

代码实现

# -*- coding: utf-8 -*-
import random
import copy
import time
import sys
import math
import tkinter #//GUI模块
import threading
from functools import reduce


# 参数
'''
ALPHA:信息启发因子,值越大,则蚂蚁选择之前走过的路径可能性就越大
      ,值越小,则蚁群搜索范围就会减少,容易陷入局部最优
BETA:Beta值越大,蚁群越就容易选择局部较短路径,这时算法收敛速度会
     加快,但是随机性不高,容易得到局部的相对最优
'''
(ALPHA, BETA, RHO, Q) = (1.0,2.0,0.5,100.0)
# 城市数,蚁群
(city_num, ant_num) = (50,50)
distance_x = [
    178,272,176,171,650,499,267,703,408,437,491,74,532,
    416,626,42,271,359,163,508,229,576,147,560,35,714,
    757,517,64,314,675,690,391,628,87,240,705,699,258,
    428,614,36,360,482,666,597,209,201,492,294]
distance_y = [
    170,395,198,151,242,556,57,401,305,421,267,105,525,
    381,244,330,395,169,141,380,153,442,528,329,232,48,
    498,265,343,120,165,50,433,63,491,275,348,222,288,
    490,213,524,244,114,104,552,70,425,227,331]
#城市距离和信息素
distance_graph = [ [0.0 for col in range(city_num)] for raw in range(city_num)]
pheromone_graph = [ [1.0 for col in range(city_num)] for raw in range(city_num)]



#----------- 蚂蚁 -----------
class Ant(object):

    # 初始化
    def __init__(self,ID):
        
        self.ID = ID                 # ID
        self.__clean_data()          # 随机初始化出生点

    # 初始数据
    def __clean_data(self):
    
        self.path = []               # 当前蚂蚁的路径           
        self.total_distance = 0.0    # 当前路径的总距离
        self.move_count = 0          # 移动次数
        self.current_city = -1       # 当前停留的城市
        self.open_table_city = [True for i in range(city_num)] # 探索城市的状态
        
        city_index = random.randint(0,city_num-1) # 随机初始出生点
        self.current_city = city_index
        self.path.append(city_index)
        self.open_table_city[city_index] = False
        self.move_count = 1
    
    # 选择下一个城市
    def __choice_next_city(self):
        
        next_city = -1
        select_citys_prob = [0.0 for i in range(city_num)]  #存储去下个城市的概率
        total_prob = 0.0

        # 获取去下一个城市的概率
        for i in range(city_num):
            if self.open_table_city[i]:
                try :
                    # 计算概率:与信息素浓度成正比,与距离成反比
                    select_citys_prob[i] = pow(pheromone_graph[self.current_city][i], ALPHA) * pow((1.0/distance_graph[self.current_city][i]), BETA)
                    total_prob += select_citys_prob[i]
                except ZeroDivisionError as e:
                    print ('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID = self.ID, current = self.current_city, target = i))
                    sys.exit(1)
        
        # 轮盘选择城市
        if total_prob > 0.0:
            # 产生一个随机概率,0.0-total_prob
            temp_prob = random.uniform(0.0, total_prob)
            for i in range(city_num):
                if self.open_table_city[i]:
                    # 轮次相减
                    temp_prob -= select_citys_prob[i]
                    if temp_prob < 0.0:
                        next_city = i
                        break

        # 未从概率产生,顺序选择一个未访问城市
        # if next_city == -1:
        #     for i in range(city_num):
        #         if self.open_table_city[i]:
        #             next_city = i
        #             break

        if (next_city == -1):
            next_city = random.randint(0, city_num - 1)
            while ((self.open_table_city[next_city]) == False):  # if==False,说明已经遍历过了
                next_city = random.randint(0, city_num - 1)

        # 返回下一个城市序号
        return next_city
    
    # 计算路径总距离
    def __cal_total_distance(self):
        
        temp_distance = 0.0

        for i in range(1, city_num):
            start, end = self.path[i], self.path[i-1]
            temp_distance += distance_graph[start][end]

        # 回路
        end = self.path[0]
        temp_distance += distance_graph[start][end]
        self.total_distance = temp_distance
        
    
    # 移动操作
    def __move(self, next_city):
        
        self.path.append(next_city)
        self.open_table_city[next_city] = False
        self.total_distance += distance_graph[self.current_city][next_city]
        self.current_city = next_city
        self.move_count += 1
        
    # 搜索路径
    def search_path(self):

        # 初始化数据
        self.__clean_data()

        # 搜素路径,遍历完所有城市为止
        while self.move_count < city_num:
            # 移动到下一个城市
            next_city =  self.__choice_next_city()
            self.__move(next_city)

        # 计算路径总长度
        self.__cal_total_distance()

#----------- TSP问题 -----------
        
class TSP(object):

    def __init__(self, root, width = 800, height = 600, n = city_num):

        # 创建画布
        self.root = root                               
        self.width = width      
        self.height = height
        # 城市数目初始化为city_num
        self.n = n
        # tkinter.Canvas
        self.canvas = tkinter.Canvas(
                root,
                width = self.width,
                height = self.height,
                bg = "#EBEBEB",             # 背景白色 
                xscrollincrement = 1,
                yscrollincrement = 1
            )
        self.canvas.pack(expand = tkinter.YES, fill = tkinter.BOTH)
        self.title("TSP蚁群算法(n:初始化 e:开始搜索 s:停止搜索 q:退出程序)")
        self.__r = 5
        self.__lock = threading.RLock()     # 线程锁

        self.__bindEvents()
        self.new()

        # 计算城市之间的距离
        for i in range(city_num):
            for j in range(city_num):
                temp_distance = pow((distance_x[i] - distance_x[j]), 2) + pow((distance_y[i] - distance_y[j]), 2)
                temp_distance = pow(temp_distance, 0.5)
                distance_graph[i][j] =float(int(temp_distance + 0.5))

    # 按键响应程序
    def __bindEvents(self):

        self.root.bind("q", self.quite)        # 退出程序
        self.root.bind("n", self.new)          # 初始化
        self.root.bind("e", self.search_path)  # 开始搜索
        self.root.bind("s", self.stop)         # 停止搜索

    # 更改标题
    def title(self, s):

        self.root.title(s)

    # 初始化
    def new(self, evt = None):

        # 停止线程
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()

        self.clear()     # 清除信息 
        self.nodes = []  # 节点坐标
        self.nodes2 = [] # 节点对象

        # 初始化城市节点
        for i in range(len(distance_x)):
            # 在画布上随机初始坐标
            x = distance_x[i]
            y = distance_y[i]
            self.nodes.append((x, y))
            # 生成节点椭圆,半径为self.__r
            node = self.canvas.create_oval(x - self.__r,
                    y - self.__r, x + self.__r, y + self.__r,
                    fill = "#ff0000",      # 填充红色
                    outline = "#000000",   # 轮廓白色
                    tags = "node",
                )
            self.nodes2.append(node)
            # 显示坐标
            self.canvas.create_text(x,y-10,              # 使用create_text方法在坐标(302,77)处绘制文字
                    text = '('+str(x)+','+str(y)+')',    # 所绘制文字的内容
                    fill = 'black'                       # 所绘制文字的颜色为灰色
                )
            
        # 顺序连接城市
        #self.line(range(city_num))
        
        # 初始城市之间的距离和信息素
        for i in range(city_num):
            for j in range(city_num):
                pheromone_graph[i][j] = 1.0
                
        self.ants = [Ant(ID) for ID in range(ant_num)]  # 初始蚁群
        self.best_ant = Ant(-1)                          # 初始最优解
        self.best_ant.total_distance = 1 << 31           # 初始最大距离
        self.iter = 1                                    # 初始化迭代次数 
            
    # 将节点按order顺序连线
    def line(self, order):
        # 删除原线
        self.canvas.delete("line")
        def line2(i1, i2):
            p1, p2 = self.nodes[i1], self.nodes[i2]
            self.canvas.create_line(p1, p2, fill = "#000000", tags = "line")
            return i2
        
        # order[-1]为初始值
        reduce(line2, order, order[-1])

    # 清除画布
    def clear(self):
        for item in self.canvas.find_all():
            self.canvas.delete(item)

    # 退出程序
    def quite(self, evt):
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()
        self.root.destroy()
        print (u"\n程序已退出...")
        sys.exit()

    # 停止搜索
    def stop(self, evt):
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()
        
    # 开始搜索
    def search_path(self, evt = None):

        # 开启线程
        self.__lock.acquire()
        self.__running = True
        self.__lock.release()
        
        while self.__running:
            # 遍历每一只蚂蚁
            for ant in self.ants:
                # 搜索一条路径
                ant.search_path()
                # 与当前最优蚂蚁比较
                if ant.total_distance < self.best_ant.total_distance:
                    # 更新最优解
                    self.best_ant = copy.deepcopy(ant)
            # 更新信息素
            self.__update_pheromone_gragh()
            print (u"迭代次数:",self.iter,u"最佳路径总距离:",int(self.best_ant.total_distance))
            # 连线
            self.line(self.best_ant.path)
            # 设置标题
            self.title("TSP蚁群算法(n:随机初始 e:开始搜索 s:停止搜索 q:退出程序) 迭代次数: %d" % self.iter)
            # 更新画布
            self.canvas.update()
            self.iter += 1

    # 更新信息素
    def __update_pheromone_gragh(self):

        # 获取每只蚂蚁在其路径上留下的信息素
        temp_pheromone = [[0.0 for col in range(city_num)] for raw in range(city_num)]
        for ant in self.ants:
            for i in range(1,city_num):
                start, end = ant.path[i-1], ant.path[i]
                # 在路径上的每两个相邻城市间留下信息素,与路径总距离反比
                temp_pheromone[start][end] += Q / ant.total_distance
                temp_pheromone[end][start] = temp_pheromone[start][end]

        # 更新所有城市之间的信息素,旧信息素衰减加上新迭代信息素
        for i in range(city_num):
            for j in range(city_num):
                pheromone_graph[i][j] = pheromone_graph[i][j] * RHO + temp_pheromone[i][j]

    # 主循环
    def mainloop(self):
        self.root.mainloop()

#----------- 程序的入口处 -----------
                
if __name__ == '__main__':


    TSP(tkinter.Tk()).mainloop()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/582156
推荐阅读
相关标签
  

闽ICP备14008679号