当前位置:   article > 正文

第十三届蓝桥杯国赛 C++ B 组 J 题——搬砖(AC)_蓝桥杯铺瓷砖c++

蓝桥杯铺瓷砖c++

1.搬砖

1.题目描述

这天,小明在搬砖。

他一共有 n n n 块砖, 他发现第 i i i 砖的重量为 w i w_{i} wi, 价值为 v i v_{i} vi 。他突然想从这些 砖中选一些出来从下到上堆成一座塔, 并且对于塔中的每一块砖来说, 它上面 所有砖的重量和不能超过它自身的价值。

他想知道这样堆成的塔的总价值(即塔中所有砖块的价值和)最大是多少。

2.输入格式

输入共 n + 1 n+1 n+1 行, 第一行为一个正整数 n n n, 表示砖块的数量。后面 n n n 行, 每行两个正整数 w i , v i w_i ,v_i wi,vi
分别表示每块砖的重量和价值。

3.输出格式

一行, 一个整数表示答案。

4.样例输入

5
4 4
1 1
5 2
5 5
4 3

5.样例输出

10

6.数据范围

n ≤ 1000 ; w i ≤ 20 ; v i ≤ 20000 。 n≤1000;w_i ≤20;v_i ≤20000 。 n1000;wi20;vi20000

7.原题链接

搬砖

2.解题思路

诸如此题的模型,思路都是按照一种方式排序,使得最优解答案的选择情况,是排序后的一个子序列,然后直接进行背包 d p dp dp 即可。

那么该如何去寻找排序的条件呢?一般的思路在于,对于砖块 x x x y y y,如果排序后的结果 y y y x x x的后面,那么对于任意 y y y x x x 之上的摆放情况,都一定可以将两者调换。
在这里插入图片描述
如图,红色砖块为 y y y 上所有砖块的重量,我们设为 w 1 w_1 w1,绿色为 x x x y y y 之间的砖块重量,我们设为 w 2 w_2 w2
根据题意可知: v y ≥ w 1 , v x ≥ w 1 + w y + w 2 v_y≥ w_1,v_x≥w_1+w_y+w_2 vyw1vxw1+wy+w21
假设排序后 y y y x x x 的后面,那么也一定满足: v x ≥ w 1 , v y ≥ w 1 + w x + w 2 v_x≥ w_1,v_y≥w_1+w_x+w_2 vxw1vyw1+wx+w22

因为 v x ≥ w 1 + w y + w 2 v_x≥w_1+w_y+w_2 vxw1+wy+w21 w y + w 2 w_y+w_2 wy+w2一定大于 0 0 0,显然 v x ≥ w 1 v_x≥ w_1 vxw1是一定符合要求的。

然后考虑第二个式子,因为 v x ≥ w 1 + w y + w 2 v_x≥w_1+w_y+w_2 vxw1+wy+w21,经过变形可得 v x − w y ≥ w 1 + w 2 v_x-w_y≥w_1+w_2 vxwyw1+w23
将式子3带入式子2可得:
v y ≥ w x + v x − w y v_y≥w_x+v_x-w_y vywx+vxwy
将式子整理可得:
v y + w y ≥ w x + v x v_y+w_y≥w_x+v_x vy+wywx+vx
由此,我们找到了排序条件,也就是说,当满足 v y + w y ≥ w x + v x v_y+w_y≥w_x+v_x vy+wywx+vx 时,任意 y y y x x x 之上的摆放情况,都一定可以将两者调换

接下来就是进行背包 d p dp dp即可,
定义 f [ i ] [ j ] f[i][j] f[i][j]为只考虑前 i i i 个物品,且选择的重量为 j j j 的最大价值。考虑如何进行转移,对于背包问题,无非是选与不选的两种抉择:

f [ i ] [ j ] = { f [ i − 1 ] [ j ] 不可选 m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − w ] + v ) if j≥w且v≥j-w可选 f[i][j] =

{f[i1][j]max(f[i1][j],f[i1][jw]+v)if j≥w且v≥j-w
f[i][j]={f[i1][j]max(f[i1][j],f[i1][jw]+v)不可选if j≥wv≥j-w可选

题目体积最大只有2e4,答案即为从 f [ n ] [ 0 ] f[n][0] f[n][0] f [ n ] [ 20000 ] f[n][20000] f[n][20000]取个最大值。由于是01背包问题,可以使用滚动数组进行优化。

时间复杂度: O ( n l o g n + n V ) O(nlogn+nV) O(nlogn+nV)

3.Ac_code

未优化版本:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int, int> PII;
#define pb(s) push_back(s);
#define SZ(s) ((int)s.size());
#define ms(s,x) memset(s, x, sizeof(s))
#define all(s) s.begin(),s.end()
const int inf = 0x3f3f3f3f;
const int mod = 1000000007;
const int N = 1010;


int n;
//只考虑前 i 个砖块,且重量为 j 的最大价值
int f[N][N * 20];
PII a[N];
bool cmp(PII b, PII c) {
    return b.first + b.second < c.first + c.second;
}
void solve()
{
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> a[i].first >> a[i].second;
    }
    sort(a + 1, a + n + 1, cmp);
    for (int i = 1; i <= n; ++i) {
        int w = a[i].first, v = a[i].second;
        for (int j = 0; j <= 20000; ++j) {
            f[i][j] = f[i - 1][j];
            //可选情况
            if (w <= j && v >= j - w) f[i][j] = max(f[i][j], f[i - 1][j - w] + v);
        }
    }
    int ans=0;
    for(int i=0;i<=20000;++i) ans=max(ans,f[n][i]);
    cout << ans << '\n';
}
int main()
{
    ios_base :: sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    int t = 1;
    while (t--)
    {
        solve();
    }
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

滚动数组优化:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int, int> PII;
#define pb(s) push_back(s);
#define SZ(s) ((int)s.size());
#define ms(s,x) memset(s, x, sizeof(s))
#define all(s) s.begin(),s.end()
const int inf = 0x3f3f3f3f;
const int mod = 1000000007;
const int N = 1010;


int n;
//只考虑前 i 个砖块,且重量为 j 的最大价值
int f[N * 20];
PII a[N];
bool cmp(PII b, PII c) {
    return b.first + b.second < c.first + c.second;
}
void solve()
{
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> a[i].first >> a[i].second;
    }
    sort(a + 1, a + n + 1, cmp);
    for (int i = 1; i <= n; ++i) {
        int w = a[i].first, v = a[i].second;
        for (int j = 20000; j >= w; --j) {
            //可选情况
            if ( v >= j - w) f[j] = max(f[j], f[j - w] + v);
        }
    }
    int ans = 0;
    for (int i = 0; i <= 20000; ++i) ans = max(ans, f[i]);
    cout << ans << '\n';
}
int main()
{
    ios_base :: sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    int t = 1;
    while (t--)
    {
        solve();
    }
    return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/586222
推荐阅读
相关标签
  

闽ICP备14008679号