赞
踩
由于目前很多spark程序资料都是用scala语言写的,但是现在需要用python来实现,于是在网上找了scala写的例子改为python实现
代码如下:
from pyspark.sql import SparkSession
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("PythonWordCount")\
.master("spark://mini1:7077") \
.getOrCreate()
spark.conf.set("spark.executor.memory", "500M")
sc = spark.sparkContext
a = sc.parallelize([1, 2, 3])
b = a.flatMap(lambda x: (x,x ** 2))
print(a.collect())
print(b.collect())
运行结果:
为了方便调试,这里采用本地模式进行测试
from py4j.compat import long from pyspark.sql import SparkSession def formatData(arr): # arr = arr.split(",") mb = (arr[0], arr[2]) flag = arr[3] time = long(arr[1]) # time = arr[1] if flag == "1": time = -time return (mb,time) if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("PythonWordCount")\ .master("local")\ .getOrCreate() sc = spark.sparkContext # sc = spark.sparkContext line = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\bs_log").map(lambda x: x.split(',')) count = line.map(lambda x: formatData(x)) rdd0 = count.reduceByKey(lambda agg, obj: agg + obj) # print(count.collect()) line2 = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\lac_info.txt").map(lambda x: x.split(',')) rdd = count.map(lambda arr: (arr[0][1], (arr[0][0], arr[1]))) rdd1 = line2.map(lambda arr: (arr[0], (arr[1], arr[2]))) rdd3 = rdd.join(rdd1) rdd4 =rdd0.map(lambda arr: (arr[0][0], arr[0][1], arr[1])) # .map(lambda arr: list(arr).sortBy(lambda arr1: arr1[2]).reverse) rdd5 = rdd4.groupBy(lambda arr: arr[0]).values().map(lambda das: sorted(list(das), key=lambda x: x[2], reverse=True)) print(rdd5.collect())
原文件数据:
结果如下:
[[('18688888888', '16030401EAFB68F1E3CDF819735E1C66', 87600), ('18688888888', '9F36407EAD0629FC166F14DDE7970F68', 51200), ('18688888888', 'CC0710CC94ECC657A8561DE549D940E0', 1300)], [('18611132889', '16030401EAFB68F1E3CDF819735E1C66', 97500), ('18611132889', '9F36407EAD0629FC166F14DDE7970F68', 54000), ('18611132889', 'CC0710CC94ECC657A8561DE549D940E0', 1900)]]
from pyspark.sql import SparkSession from py4j.compat import long def formatData(arr): # arr = arr.split(",") mb = (arr[0], arr[2]) flag = arr[3] time = long(arr[1]) # time = arr[1] if flag == "1": time = -time return (mb,time) if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("PythonWordCount")\ .master("local")\ .getOrCreate() sc = spark.sparkContext line = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\bs_log").map(lambda x: x.split(',')) rdd0 = line.map(lambda x: formatData(x)) rdd1 = rdd0.reduceByKey(lambda agg, obj: agg + obj).map(lambda t: (t[0][1], (t[0][0], t[1]))) line2 = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\lac_info.txt").map(lambda x: x.split(',')) rdd2 = line2.map(lambda x: (x[0], (x[1], x[2]))) rdd3 = rdd1.join(rdd2).map(lambda x: (x[1][0][0], x[0], x[1][0][1], x[1][1][0], x[1][1][1])) rdd4 = rdd3.groupBy(lambda x: x[0]) rdd5 = rdd4.mapValues(lambda das: sorted(list(das), key=lambda x: x[2], reverse=True)[:2]) print(rdd1.join(rdd2).collect()) print(rdd5.collect()) rdd5.saveAsTextFile("D:\\code\\hadoop\\data\\spark\\day02\\out1") sc.stop()
import urllib from pyspark.sql import SparkSession def getUrls(urls): url = urls[0] parsed = urllib.parse.urlparse(url) return (parsed.netloc, url, urls[1]) if __name__ == "__main__": spark = SparkSession \ .builder \ .appName("PythonWordCount") \ .master("local") \ .getOrCreate() sc = spark.sparkContext line = sc.textFile("D:\\code\\hadoop\\data\\spark\\day02\\itcast.log").map(lambda x: x.split('\t')) //从数据库中加载规则 arr = ["java.itcast.cn", "php.itcast.cn", "net.itcast.cn"] rdd1 = line.map(lambda x: (x[1], 1)) rdd2 = rdd1.reduceByKey(lambda agg, obj: agg + obj) rdd3 = rdd2.map(lambda x: getUrls(x)) for ins in arr: rdd = rdd3.filter(lambda x:x[0] == ins) result = rdd.sortBy(lambda x: x[2], ascending = False).take(2) print(result) spark.stop()
结果如下:
from operator import gt from pyspark.sql import SparkSession class Girl: def __init__(self, faceValue, age): self.faceValue = faceValue self.age = age def __gt__(self, other): if other.faceValue == self.faceValue: return gt(self.age, other.age) else: return gt(self.faceValue, other.faceValue) if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("PythonWordCount")\ .master("local")\ .getOrCreate() sc = spark.sparkContext rdd1 = sc.parallelize([("yuihatano", 90, 28, 1), ("angelababy", 90, 27, 2), ("JuJingYi", 95, 22, 3)]) rdd2 = rdd1.sortBy(lambda das: Girl(das[1], das[2]),False) print(rdd2.collect()) sc.stop()
结果如下:
from pyspark import SQLContext from pyspark.sql import SparkSession if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("PythonWordCount")\ .master("local")\ .getOrCreate() sc = spark.sparkContext sqlContext = SQLContext(sc) df = sqlContext.read.format("jdbc").options(url="jdbc:mysql://localhost:3306/hellospark",driver="com.mysql.jdbc.Driver",dbtable="(select * from actor) tmp",user="root",password="123456").load() print(df.select('description','age').show(2)) # print(df.printSchema) sc.stop()
结果如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。