赞
踩
回顾:hadoop主要解决,海量数据的存储和海量数据的分析计算。
spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
hadoop的yarn框架比spark框架诞生的晚,所以spark自己也涉及了一套资源调度框架。
区别:
1、mr是基于磁盘的,spark是基于内存
2、mr的task是进程
3、spark的task是线程,在executor进程里执行的是线程
4、mr在container里执行(留有接口方便插入),spark在worker里执行(自己用,没有接口)
5、mr适合做一次计算,spark适合做迭代计算
1、hadoop mr框架
从数据源获取数据,经过分析计算,将结果输出到指定位置,核心是一次计算,不适合迭代计算。
2、spark框架
spark框架计算比mr快的原因是:中间结果不落盘。注意spark的shuffle也是落盘的。
spark core:实现了spark的基本功能,包括任务调度、内存管理、错误恢复、与存储系统交互等模块。spark core中还包含了对弹性分布式数据集(resilient distributed dataset,简称rdd)的api定义。
spark sql:是spark用来操作结构化数据的程序包。通过spark sql,我们可以使用sql或者apache hive版本的hql来查询数据。spark sql支持多种数据源,比如hive表、parquet以及json等。
spark mllib:提供常见的机器学习功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据导入等额外的支持功能。
spark graphx:主要用于图形并行计算和图挖掘系统的组件。
集群管理器:spark设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计算。为了实现这样的要求,同时获得最大灵活性,spark支持在各种集群管理器(cluster manager)上运行,包括hadoop yarn、apache mesos,以及spark自带的一个简易调度器,叫做独立调度器。
1、快:与hadoop的mapreduce相比,spark基于内存的运算要快上100倍以上,基于硬盘的运算也要快10倍以上。spark实现了高效的dag执行引擎,口头语通过基于内存来高效处理数据流。计算的中间结果是存在于内存中的。
2、易用:spark支持java、python和scala的api,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且spark支持交互式的python和scala的shell,可以非常方便地在这些shell种使用spark集群来验证解决问题的方法。
3、通用:spark提供了统一的解决方案。spark可以用于,交互式查询(spark sql)、实时流处理(spark streaming)、机器学习(spark mllib)和图计算(graphx)。这些不同类型的处理1都可以在同一个应用种无缝使用。减少了开发和维护的人力成本和部署平台的物力成本。
4、兼容性:spark可以非常方便地与其它地开源产品进行融合。比如:spark可以使用hadoop的yarn和apache mesos作为它的资源管理和调度器,并且可以处理所有hadoop支持的数据,包括hdfs、hbase等。这对于已经部署hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用spark的强大处理能力。
部署spark集群大体上分为两种模式:单机模式与集群模式
大多数分布式框架都支持单机模式,方便开发者调试框架的运行环境。但是在生产环境种,并不会使用单机模式。因此,后续直接按照集群模式部署spark集群。
下面详细列举了spark目前支持的部署模式。
1、local模式:在本地部署spark服务
2、standalone模式:spark自带的任务调度模式。(国内常用)
3、yarn模式:spark使用hadoop的yarn组件进行资源和任务调度。(国内最常用)
4、mesos模式:spark使用mesos平台进行资源与任务的调度。(国内很少用)
local模式就是运行在一台计算机上的模式,通常就是用于在本机上练手和测试
1)上传并解压spark安装包
[atguigu@hadoop102 sorfware]$ tar -zxvf spark-3.1.3-bin-hadoop3.2.tgz -C /opt/module/
[atguigu@hadoop102 module]$ mv spark-3.1.3-bin-hadoop3.2 spark-local
2)官方求pi案例
[atguigu@hadoop102 spark-local]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
可以查看spark-submit所用参数
[atguigu@hadoop102 spark-local]$ bin/spark-submit
–class:表示要执行程序的主类
–master local[2]“
(1)local:没有指定线程数,则所有计算都运行在一个线程当中,没有任何并行计算。
(2)local[k]:指定使用k个core来运行计算,比如local[2]就是运行2个core来执行
20/09/20 09:30:53 INFO TaskSetManager:
20/09/15 10:15:00 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
20/09/15 10:15:00 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
(3)local[*]:默认模式。自动帮你按照cpu最多核来设置线程数。比如cpu有8核,spark帮你自动设置8个线程。
20/09/20 09:30:53 INFO TaskSetManager:
20/09/15 10:15:58 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
20/09/15 10:15:58 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
20/09/15 10:15:58 INFO Executor: Running task 2.0 in stage 0.0 (TID 2)
20/09/15 10:15:58 INFO Executor: Running task 4.0 in stage 0.0 (TID 4)
20/09/15 10:15:58 INFO Executor: Running task 3.0 in stage 0.0 (TID 3)
20/09/15 10:15:58 INFO Executor: Running task 5.0 in stage 0.0 (TID 5)
20/09/15 10:15:59 INFO Executor: Running task 7.0 in stage 0.0 (TID 7)
20/09/15 10:15:59 INFO Executor: Running task 6.0 in stage 0.0 (TID 6)
3)结果展示
该算法是利用蒙特-卡罗算法求pi
1、需求:读取多个输入文件,统计每个单词出现的总次数。
2、需求分析
3、代码实现
1)准备文件
[atguigu@hadoop102 spark-local]$ mkdir input
在Input下创建2个文件1.txt和2.txt,并输入一下内容
hello atguigu
hello spark
2)启动spark-shell
[atguigu@hadoop102 spark-local]$ bin/spark-shell 20/07/02 10:17:11 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). Spark context Web UI available at http://hadoop102:4040 Spark context available as 'sc' (master = local[*], app id = local-1593656236294). Spark session available as 'spark'. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 3.1.3 /_/ Using Scala version 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_212) Type in expressions to have them evaluated. Type :help for more information. scala>
注意:sc是sparkcore程序的入口;spark是sparksql程序入口;master=local[*]表示本地模式运行。
3)再开启一个hadoop102远程连接窗口,发现了一个sparksubmit进程
[atguigu@hadoop102 spark-local]$ jps
3627 SparkSubmit
4047 Jps
运行任务方式说明:spark-submit,是将jar上传到集群,执行spark任务;spark-shell,相当于命令行工具,本身也是一个application。
4)登录hadoop102:4040,查看程序运行情况
说明:本地模式下,默认的调度器为fifo。
5)运行workcount程序
scala>sc.textFile("/opt/module/spark-local/input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
res0: Array[(String, Int)] = Array((hello,4), (atguigu,2), (spark,2))
注意:只有collect开始执行时,才会加载数据
可登录hadoop102:4040查看程序运行结果
standalone模式是spark自带的资源调度引擎,构建一个由master+worker构成的spark集群,spark运行在集群种。
这个要和hadoop中的standalone区别开来。这里的standalone是指只用spark来搭建一个集群,不需要借助hadoop的yarn和mesos等其它框架。
master:spark特有资源调度系统的leader。掌管着整个集群的资源信息,类似于yarn框架中的resourcemanager。
worker:spark特有资源调度系统的slave,有多个。每个slave掌管着所在节点的资源信息,类似于yarn框架中的nodemanager。
master和worker是spark的守护进程、集群资源管理者,即spark在特定模式(standalone)下正常运行必须要有的后台常驻进程。
driver和executor是临时程序,当有具体任务提交到spark集群才会开启的程序。standalone模式是spark自带的资源调度引擎,构建一个由master+worker构成spark集群,spark运行在集群中。
这个要和hadoop中的standalone区别开来。这里的standalone是指只用spark来搭建一个集群,不需要借助hadoop的yarn和mesos等其它框架。
1、集群规划
2、再解压一份spark安装包,并修改解压后的文件夹名称为spark-standalone
[atguigu@hadoop102 sorfware]$ tar -zxvf spark-3.1.3-bin-hadoop3.2.tgz -C /opt/module/
[atguigu@hadoop102 module]$ mv spark-3.1.3-bin-hadoop3.2 spark-standalone
3、进入spark的配置文件/opt/module/spark-standalone/conf
[atguigu@hadoop102 spark-standalone]$ cd conf
4、修改slave文件,添加work节点
atguigu@hadoop102 conf]$ mv slaves.template slaves
[atguigu@hadoop102 conf]$ vim slaves
hadoop102
hadoop103
hadoop104
5、修改spark-env.sh文件,添加master节点
[atguigu@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh
[atguigu@hadoop102 conf]$ vim spark-env.sh
SPARK_MASTER_HOST=hadoop102
SPARK_MASTER_PORT=7077
6、分发spark-standalone包
[atguigu@hadoop102 module]$ xsync spark-standalone/
7、启动spark集群
[atguigu@hadoop102 module]$ xsync spark-standalone/
查看三台服务器运行进程(xcall.sh是以前数仓项目里面讲的脚本)
[atguigu@hadoop102 spark-standalone]$ xcall.sh jps
================atguigu@hadoop102================
3238 Worker
3163 Master
================atguigu@hadoop103================
2908 Worker
================atguigu@hadoop104================
2978 Worker
注意:如果遇见”Java_home not set“异常,可以在sbin目录下的spark-config.sh文件中加入如下配置
export JAVA_HOME=XXXX
8、网页查看:hadoop102:8080
9、官方求pi案例
[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
参数:–master spark://hadoop102:7077指定要连接的集群的master。
10、页面查看http://hadoop102:8080/,发现执行本次任务,默认采用三台服务器节点的总核数24核,每个节点内存1024M.
8080:master的webui
4040:application的webui的端口号
1、配置executor可用内存为2G,使用cpu核数为2个
[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
2、页面查看http://hadoop102:8080/
3、基本语法
bin/spark-submit \
--class <main-class>
--master <master-url> \
... # other options
<application-jar> \
[application-arguments]
4、参数说明
由于spark-shell停止掉后,hadoop102:4040页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况
1、修改spark-default.conf.template名称
[atguigu@hadoop102 conf]$ mv spark-defaults.conf.template spark-defaults.conf
2、修改spark-default.conf文件,配置日志存储路径
[atguigu@hadoop102 conf]$ vim spark-defaults.conf
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:8020/directory
注意:需要启动hdaoop集群,hdfs上的目录需要提前存在
[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /directory
3、修改spark-env.sh文件,添加如下配置
[atguigu@hadoop102 conf]$ vim spark-env.sh
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/directory
-Dspark.history.retainedApplications=30"
1)参数1含义:webui访问的端口号为18080
2)参数2含义:指定历史服务器日志存储路径(读)
3)参数3含义:指定保存application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上的显示的应用数
4、分发配置文件
[atguigu@hadoop102 conf]$ xsync spark-defaults.conf spark-env.sh
5、启动历史服务
[atguigu@hadoop102 spark-standalone]$
sbin/start-history-server.sh
6、再次执行任务
[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
7、查看spark历史服务地址:hadoop102:18080
1、高可用原理
2、配置高可用
1)停止集群
[atguigu@hadoop102 spark-standalone]$ sbin/stop-all.sh
2)zookeeper正常安装并启动(基于以前讲的数仓项目脚本)
[atguigu@hadoop102 zookeeper-3.4.10]$ zk.sh start
3)修改spark-env.sh文件添加如下配置
[atguigu@hadoop102 conf]$ vim spark-env.sh #注释掉如下内容: #SPARK_MASTER_HOST=hadoop102 #SPARK_MASTER_PORT=7077 #添加上如下内容。配置由Zookeeper管理Master,在Zookeeper节点中自动创建/spark目录,用于管理: export SPARK_DAEMON_JAVA_OPTS=" -Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104 -Dspark.deploy.zookeeper.dir=/spark" #添加如下代码 #Zookeeper3.5的AdminServer默认端口是8080,和Spark的WebUI冲突 export SPARK_MASTER_WEBUI_PORT=8989
4)分发配置文件
[atguigu@hadoop102 conf]$ xsync spark-env.sh
5)在hadoop102上启动全部节点
[atguigu@hadoop102 spark-standalone]$ sbin/start-all.sh
6)在hadoop103上单独启动master节点
[atguigu@hadoop103 spark-standalone]$ sbin/start-master.sh
7)在启动一个hadoop102窗口,将/opt/module/spark-local/input数据上传到hadoop集群的/input目录
[atguigu@hadoop102 spark-standalone]$ hadoop fs -put /opt/module/spark-local/input/ /input
8)spark ha集群访问
[atguigu@hadoop102 spark-standalone]$
bin/spark-shell \
--master spark://hadoop102:7077,hadoop103:7077 \
--executor-memory 2g \
--total-executor-cores 2
参数:–master spark://hadoop102:7077指定要连接的集群的master
注:一旦配置了高可用以后,master后面要连接多个master
9)执行wordcount程序
scala>sc.textFile("hdfs://hadoop102:8020/input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
res0: Array[(String, Int)] = Array((hello,4), (atguigu,2), (spark,2))
3、高可用性测试
1)查看hadoop102的master进程
[atguigu@hadoop102 ~]$ jps
5506 Worker
5394 Master
5731 SparkSubmit
4869 QuorumPeerMain
5991 Jps
5831 CoarseGrainedExecutorBackend
2)kill掉hadoop102的master进程,页面中观察http://hadoop103:8080/的状态是否切换为active
[atguigu@hadoop102 ~]$ kill -9 5394
3)再启动hadoop102的master进程
[atguigu@hadoop102 spark-standalone]$ sbin/start-master.sh
spark由standalone-client核standalone-cluster两种模式,主要区别在于:driver程序的运行节点。
1、客户端模式
[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077,hadoop103:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
–deploy-mode client,表示driver程序运行再本地客户端,默认模式。
standalone client运行流程
2、集群模式
[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077,hadoop103:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
–deploy-mode cluster,表示driver程序运行在集群
standalone cluster运行流程
1)查看http://hadoop102:8989/页面,点击completed drivers里面的worker
2)跳转到spark worker页面,点击finished drivers中logs下面的stdout
3)最终打印结果如下
注意:在测试standalone模式,cluster运行流程的时候,阿里云用户访问不到worker,因为worker是从master内部跳转的,这是正常的,实际工作中我们不可能通过客户端访问的,这些恶端口都对外都会禁用,需要的时候会通过授权到master访问worker
spark客户端直接连接yarn,不需要额外构建spark集群
1、停止standalone模式下的spark集群
[atguigu@hadoop102 spark-standalone]$ sbin/stop-all.sh
[atguigu@hadoop102 spark-standalone]$ zk.sh stop
[atguigu@hadoop103 spark-standalone]$ sbin/stop-master.sh
2、为了防止和standalone模式冲突,再单独解压一份spark
[atguigu@hadoop102 software]$ tar -zxvf spark-3.1.3-bin-hadoop3.2.tgz -C /opt/module/
3、进入到/opt/module目录,修改spark-~名称为spark-yarn
[atguigu@hadoop102 module]$ mv spark-3.1.3-bin-hadoop3.2/ spark-yarn
4、修改hadoop配置文件/opt/module/~/yarn-site.xml,添加如下内容
因为测试环境虚拟机内存较少,防止执行过程进行倍意外杀死,做如下处理
[atguigu@hadoop102 hadoop]$ vim yarn-site.xml
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
5、分发配置文件
[atguigu@hadoop102 conf]$ xsync /opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml
6、修改/opt/~/spark-env.sh,添加yarn_conf_dir配置,保证后续运行任务的路径都编程集群路径
[atguigu@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh
[atguigu@hadoop102 conf]$ vim spark-env.sh
YARN_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop
7、启动hdfs以及yarn集群
[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
8、执行一个程序
[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
参数:–master yarn,表示yarn方式运行;–deploy-mode,表示客户端方式运行程序
9、查看hadoop103:8088页面,点击history,查看历史页面
由于是重新解压的spark压缩文件,所以需要针对yarn模式,再次配置一下历史服务器。
1、修改spark-default.conf.template名称
2、修改spark-default.conf文件,配置日志存储路径(写)
3、修改spark-env.sh文件,添加如下配置
参数1含义:webui访问的端口号为18080
参数2含义:指定历史服务器日志存储路径(读)
参数3含义:指定保存application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数
为了能从yarn上关联到spark历史服务器,需要配置spark历史服务器关联路径
目的:点击yarn(8088)上spark任务的history按钮,进入的是spark历史服务器(18080),而不再是yarn历史服务器(19888)
1、修改配置文件/opt/module/~/spark-defaults.conf
添加如下内容:
spark.yarn.historyserver.address=hadoop102:18080
spark.history.ui.port=18080
2、重启spark历史服务
[atguigu@hadoop102 spark-yarn]$ sbin/stop-history-server.sh
[atguigu@hadoop102 spark-yarn]$ sbin/start-history-server.sh
3、提交任务到yarn执行
[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
4、web页面查看日志:http://hadoop103:8088/cluster
点击”history“跳转到http://hadoop102:18080/
spark由yarn-client和yarn-cluster两种模式,主要区别在于:driver程序的运行节点
yarn-client:driver程序运行在客户端,适用于交互、调试,希望立即看到app的输出
yarn-cluster:driver程序运行在由resourcemanager启动的appmaster,适用于生产环境
1、客户端模式(默认)
[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
yarnclient运行模式介绍
2、集群模式
[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10
(1)查看http://hadoop103:8088/cluster页面,点击history按钮,跳转到历史详情页面
(2)http://hadoop102:18080点击executors->点击driver的stdout
注意:如果在yarn日志端无法查看到具体的日志,则在yarn-site.xml中添加如下配置并启动yarn历史服务器
<property>
<name>yarn.log.server.url</name>
<value>http://hadoop102:19888/jobhistory/logs</value>
</property>
注意:hadoop历史服务器也要启动 mr-jobhistory-daemon.sh start historyserver
yarncluster模式
1、spark查看当前spark-shell运行任务情况端口号:4040
2、spark master内部通信服务端口号:7077(类似于yarn的8032(rm和nm的内部通信)端口)
3、spark standalone模式master web端口号:8080(类似于hadoop yarn任务运行情况查看端口号:8088)(yarn模式)8989
4、spark历史服务器端口号:18080(类似于hadoop历史服务器端口号:19888)
spark shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在idea中编制程序,然后打包jar包,然后提交到集群,最常用的是创建一个maven项目,利用maven来管理jar包的依赖。
1、创建一个maven项目wordcount
2、在项目wordcount上点击右键,add framework support -> 勾选scala
3、在main下创建scala文件夹,并右键mark directory as sources root -> 在scala下创建包com.atguigu.spark
4、输入文件夹准备
5、导入项目依赖
下方的的是scala语言打包插件,只要使用scala语法打包运行到linux上面,必须要有
<dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>3.1.3</version> </dependency> </dependencies> <build> <finalName>WordCount</finalName> <plugins> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.4.6</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> </plugins> </build>
本地spark程序调试需要使用local提交模式,即将本机当作运行环境,master和worker都为本机。运行时直接加断点调试即可。如下:
1、代码实现
package com.atguigu.spark import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { //1.创建SparkConf并设置App名称 val conf = new SparkConf().setAppName("WC").setMaster("local[*]") //2.创建SparkContext,该对象是提交Spark App的入口 val sc = new SparkContext(conf) //3.读取指定位置文件:hello atguigu atguigu val lineRdd: RDD[String] = sc.textFile("input") //4.读取的一行一行的数据分解成一个一个的单词(扁平化)(hello)(atguigu)(atguigu) val wordRdd: RDD[String] = lineRdd.flatMap(_.split(" ")) //5. 将数据转换结构:(hello,1)(atguigu,1)(atguigu,1) val wordToOneRdd: RDD[(String, Int)] = wordRdd.map((_, 1)) //6.将转换结构后的数据进行聚合处理 atguigu:1、1 =》1+1 (atguigu,2) val wordToSumRdd: RDD[(String, Int)] = wordToOneRdd.reduceByKey(_+_) //7.将统计结果采集到控制台打印 wordToSumRdd.collect().foreach(println) //8.关闭连接 sc.stop() } }
2、调试流程
spark程序运行过程中会打印大量的执行日志,为了能够更好的查看程序的执行结果,可以在项目的resources目录中创建log4j.properties文件,并添加日志配置文件:
log4j.rootCategory=ERROR, console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.err log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n # Set the default spark-shell log level to ERROR. When running the spark-shell, the # log level for this class is used to overwrite the root logger's log level, so that # the user can have different defaults for the shell and regular Spark apps. log4j.logger.org.apache.spark.repl.Main=ERROR # Settings to quiet third party logs that are too verbose log4j.logger.org.spark_project.jetty=ERROR log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR log4j.logger.org.apache.parquet=ERROR log4j.logger.parquet=ERROR # SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
3、集群运行
1、修改代码,修改运行模式,将输出的方法修改为落盘,同时设置可以自定义的传入传出路径
package com.atguigu.spark import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { // 创建配置对象 添加配置参数 val conf: SparkConf = new SparkConf() .setAppName("wc") // 如果是yarn模式 写yarn // 如果是本地模式一定要写local .setMaster("yarn") // 初始化sc val sc = new SparkContext(conf) // 编写wordCount计算流程 // 把读入和写出的路径 做成动态的参数 可以由用户手动填写 // 写成main方法参数 val lineRDD: RDD[String] = sc.textFile(args(0)) // 切分 val wordRDD: RDD[String] = lineRDD.flatMap(_.split(" ")) // 转换 val tupleOneRDD: RDD[(String, Int)] = wordRDD.map((_, 1)) // 聚合 val wordCountRDD: RDD[(String, Int)] = tupleOneRDD.reduceByKey(_ + _) // 触发计算 一定要使用行动算子 // 将结果保存到文件中 // 不能重复写入同一个路径 wordCountRDD.saveAsTextFile(args(1)) } }
2、打包到集群测试
1)点击package打包,然后,查看打包完后的jar包
2)将wordcount.jar上传到/opt/module/spark-yarn目录
3)在hdfs上创建,存储输入文件的路径/input
[atguigu@hadoop102 spark-yarn]$ hadoop fs -mkdir /input
4)上传输入文件到/input路径
[atguigu@hadoop102 spark-yarn]$ hadoop fs -put /opt/module/spark-local/input/1.txt /input
5)执行任务
[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class com.atguigu.spark.WordCount \
--master yarn \
./WordCount.jar \
hdfs://hadoop102:8020/input \
hdfs://hadoop102:8020/output
注意:input和output都是hdfs上的集群路径
6)查看运行结果
[atguigu@hadoop102 spark-yarn]$ hadoop fs -cat /output/*
1、按住ctrl键,点击rdd
2、提示下载或者绑定源码
3、解压资料包中spark-3.1.3.tgz到非中文路径。例如解压到:e:\02_software
4、点击attach source…按钮,选择源码路径e:\02_software\spark-3.1.3
如果本机操作系统是windows,如果在程序中使用了hadoop相关的东西,比如写入文件到hdfs,则会遇到如下异常:
出现这个问题的原因,并不是程序的错误,而是用到了hadoop相关的服务,解决办法
1、配置hadoop_home环境变量
2、在idea中配置 run configuration,添加hadoop_home变量
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。