赞
踩
前言
- 目前使用prometheus+n9e监控 redis。
- 附录里写了之前用grafana+promethues监控rides的方法
- 相关文档如下:
《01-n9e-v5 部署-server》
《01-n9e-v5部署-agent》
《02-容器监控-cadvisor+n9e》
《03-k8s集群监控(上)》
《03-k8s集群监控(下)》
《04-监控redis集群-prometheuse+n9e》
服务器 | IP地址 | 服务 |
---|---|---|
监控服务器 | 10.10.xxx.56 | prometheus/grafana |
k8s-vip | 10.10.xxx.100 | redis集群 |
将redis_exporter部署在监控服务器上,对各环境redis进行监控。此处以监控k8s平台的redis集群为例。
version: '2'
services:
redis_exporter:
image: harbocto.boe.com.cn/public/redis_exporter
container_name: redis_exporter
expose:
- "9121"
ports:
- "9121:9121"
restart: always
command: ["--redis.addr","redis://10.10.xxx.100:30020","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30022","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30024","--redis.password","1W23lyc45j"]
**【附】**如果你要在k8s上启动,注意k8s和docker-compose中 command的对镜像中ENTRYPOINT的覆盖方式是不同的,k8s需要如下写:
command: ["/redis_exporter"]
args: ["--redis.addr","redis://10.10.xxx.100:30020","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30022","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30024","--redis.password","1W23lyc45j"]
# docker-compose up -d
[root@monitor redis_exporter]# docker-compose ps
Name Command State Ports
--------------------------------------------------------------------------------
redis_exporter /redis_exporter --redis.ad ... Up 0.0.0.0:9121->9121/tcp
######################################## # redis # ######################################## - job_name: 'redis_exporter_targets' static_configs: - targets: - redis://10.10.xxx.100:30020 - redis://10.10.xxx.100:30022 - redis://10.10.xxx.100:30024 metrics_path: /scrape relabel_configs: - source_labels: [__address__] target_label: __param_target - source_labels: [__param_target] target_label: instance - target_label: __address__ replacement: 10.10.xxx.56:9121 ## config for scraping the exporter itself - job_name: 'redis_exporter' static_configs: - targets: - 10.10.xxx.56:9121
重启prometheus
查看
我自己写的,有错误请指正
参考文档:redis官网相关文档
redis_active_defrag_running:活动碎片整理是否运行[lw] redis_allocator_active_bytes:分配器活动字节[lw] redis_active_allocated_bytes:活动分配的字节[lw] redis_assocator_frag_bytes:关联碎片字节[lw] redis_allocator_frag_ratio:分配器碎片比率[lw] redis_allocator_resident_bytes:分配器常驻字节[lw] redis_allocator_rss_bytes:分配器RSS字节[lw] redis_allocator_rss_ratio:分配器RSS比率[lw] redis_aof_current_rewrite_duration_sec:aof当前重写持续时间sec[lw] redis_aof_enabled:是否启用aof[lw] redis_aof_last_bgrewrite_status:最近一次AOF重写操作是否执行成功[lw] redis_aof_last_cow_size_bytes:在执行AOF重写期间,分配给COW的大小[lw] redis_aof_last_rewrite_duration_sec:最近一次AOF重写操作消耗的时间[lw] redis_aof_last_write_status:aof上次写入状态[lw] redis_aof_rewrite_in_progress:是否在进行AOF的重写操作[lw] redis_aof_rewrite_scheduled:是否有AOF操作等待执行[lw] redis_blocked_clients:被阻止的客户[lw] redis_client_recent_max_input_buffer_bytes:客户端最近最大输入缓冲区字节[lw] redis_client_recent_max_output_buffer_bytes:客户端最近最大输出缓冲区字节[lw] redis_cluster_enabled:是否启用集群[lw] redis_commands_duration_seconds_total:命令持续时间总秒数[lw] redis_commands_processed_total:命令处理总数[lw] redis_commands_total:命令总数[lw] redis_config_maxclients:配置最大客户端[lw] redis_config_maxmemory:配置最大内存[lw] redis_connected_clients:连接的客户[lw] redis_connected_slave_lag_seconds:连接的从节点延迟秒[lw] redis_connected_slave_offset_bytes:连接的从节点偏移字节[lw] redis_connected_slaves:连接的从节点[lw] redis_connections_received_total:收到的连接总数[lw] redis_cpu_sys_children_seconds_total:由后台进程消耗的系统CPU[lw] redis_cpu_sys_seconds_total:由Redis服务器消耗的用户CPU[lw] redis_cpu_user_children_seconds_total:由后台进程消耗的用户CPU[lw] redis_cpu_user_seconds_total:由Redis服务消耗的用户CPU[lw] redis_db_avg_ttl_seconds:db平均ttl秒[lw] redis_db_keys:数据库key的数量[lw] redis_db_keys_expiring:即将过期的key[lw] redis_defrag_hits:碎片整理命中[lw] redis_defrag_key_hits:碎片整理命中key[lw] redis_defrag_key_misses:碎片整理未命中key[lw] redis_evicted_keys_total:被驱逐的key总数[lw] redis_expired_keys_total:过期key总数[lw] redis_expired_stale_percentage:过期陈旧key占百分比[lw] redis_expired_time_cap_reached_total:已达到总时间上限[lw] redis_exporter_build_infor:redis_exporter信息[lw] redis_exporter_last_scrape_connect_time_seconds:redis_exporter最后一次采集时间[lw] redis_exporter_last_scrape_duration_seconds:redis_exporter次抓取持续时间秒[lw] redis_exporter_last_scrape_error:redis_exporter次抓取错误[lw] redis_exporter_scrape_duration_seconds_count:redis_exporter采集续时间秒数[lw] redis_exporter_scrape_duration_seconds_sum:redis_exporter持续时间秒总和[lw] redis_exporter_scrapes_total:redis_exporter抓取总数[lw] redis_instance_info:实例信息[lw] redis_keyspace_hits_total:键空间命中总数[lw] redis_keyspace_misses_total:键空间未命中总数[lw] redis_last_key_groups_scrape_duration_milliseconds:最后一个键组抓取持续时间毫秒[lw] redis_last_slow_execution_duration_seconds:最后一个慢执行持续时间秒[lw] redis_latest_fork_seconds:最新fork时间[lw] redis_lazyfree_pending_objects:惰性删除或延迟释放的对象[lw] redis_loading_dump_file:加载转储文件[lw] redis_master_last_io_seconds_ago:master最后io过去时间[lw] redis_master_repl_offset:主节点累加偏移量(判断主从是否同步)[lw] redis_master_sync_in_progress:正在进行主同步[lw] redis_mem_clients_normal:[lw] redis_mem_clients_slaves:[lw] redis_mem_fragmentation_bytes:内存碎片字节[lw] redis_mem_fragmentation_ratio:内存碎片率[lw] redis_mem_not_counted_for_eviction_bytes:内存不计入驱逐的字节数[lw] redis_memory_max_bytes:内存最大字节[lw] redis_memory_used_lua_bytes:lua脚本使用内存字节数[lw] redis_memory_used_overhead_bytes:维护数据集的内部机制所需的内存开销[lw] redis_memory_used_peak_bytes:内存使用峰值[lw] redis_memory_used_rss_bytes:rss占用内存的字节数[lw] redis_memory_used_scripts_bytes:脚本占用内存的字节数[lw] redis_memory_used_startup_bytes:启动占用内存的字节数[lw] redis_migrate_cached_sockets_total:[lw] redis_net_input_bytes_total:网络input总数[lw] redis_net_output_bytes_total:网络output总数[lw] reids_process_id:进程号[lw] redis_pubsub_channels:发布订阅频道[lw] redis_pubsub_patterns:发布订阅模式[lw] redis_rdb_bgsave_in_progress:[lw] redis_rdb_changes_since_last_save:自上次保存以来的rdb更改[lw] redis_rdb_current_bgsave_duration_sec:rdb当前bgsave持续时间[lw] redis_rdb_last_bgsave_duration_sec:rdb上次bgsave持续时间[lw] redis_rdb_last_bgsave_status:rdb上次bgsave状态[lw] redis_rdb_last_cow_size_bytes:rdb上次cow的大小[lw] redis_rdb_last_save_timestamp_seconds:rdb最后保存时间戳[lw] redis_rejected_connections_total:拒绝的连接总数[lw] redis_repl_backlog_first_byte_offset:复制起始偏移量[lw] redis_repl_backlog_history_bytes:repl_backlog历史数据大小[lw] redis_repl_backlog_is_active:repl_backlog是否开启[lw] redis_replica_partial_resync_accepted:[lw] redis_replica_partial_resync_denied:[lw] redis_replica_resyncs_full:[lw] redis_replication_backlog_bytes:[lw] redis_second_repl_offset:[lw] redis_slave_expires_tracked_keys:[lw] redis_slave_info:从节点信息[lw] redis_slave_priority:从节点优先级[lw] redis_slave_repl_offset:从节点累加偏移量(判断主从是否同步)[lw] redis_slowlog_last_id:慢查询日志最后一个的id[lw] redis_slowlog_length:慢查询日志长度[lw] redis_start_time_seconds:开始时间秒[lw] redis_target_scrape_request_errors_total:[lw] redis_up:运行时间[lw] redis_uptime_in_seconds:正常运行时间[lw]
创建图表入口:
监控看图 > 监控大盘 > 新建大盘 > 新建大盘分组 > 新建图表
redis监控没有什么需要计算的,因此建议使用n9e方式监控,变量使用比prometheus方式灵活。
变量可以根据需要定义
模板内容如下:
[ { "id": 0, "name": "redis监控", "tags": "", "configs": "{\"tags\":[{\"tagName\":\"cluster\",\"key\":\"job\",\"value\":\"redis_k8s_pub\",\"prefix\":false,\"metric\":\"redis_memory_used_bytes\"},{\"tagName\":\"node\",\"key\":\"instance\",\"value\":\"redis://10.10.239.100:30020\",\"prefix\":false,\"metric\":\"redis_memory_used_bytes\"}]}", "chart_groups": [ { "id": 0, "dashboard_id": 0, "name": "Default chart group", "weight": 0, "charts": [ { "id": 72, "group_id": 15, "configs": "{\"name\":\"客户端连接数\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"redis_connected_clients{job=\\\"$job\\\"}\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":0,\"i\":\"0\"}}", "weight": 0 }, { "id": 73, "group_id": 15, "configs": "{\"name\":\"占用内存大小\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"redis_memory_used_bytes{job=\\\"$job\\\"}\"],\"layout\":{\"h\":2,\"w\":12,\"x\":12,\"y\":0,\"i\":\"1\"}}", "weight": 0 }, { "id": 74, "group_id": 15, "configs": "{\"name\":\"每分钟处理数据量\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"rate(redis_commands_processed_total{job=\\\"$job\\\"}[1m])\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":2,\"i\":\"2\"}}", "weight": 0 }, { "id": 75, "group_id": 15, "configs": "{\"name\":\"缓存命中率\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"redis_keyspace_hits_total{job=\\\"$job\\\"}/(redis_keyspace_hits_total{job=\\\"$job\\\"}+redis_keyspace_misses_total{job=\\\"$job\\\"})\"],\"layout\":{\"h\":2,\"w\":12,\"x\":12,\"y\":2,\"i\":\"3\"}}", "weight": 0 }, { "id": 76, "group_id": 15, "configs": "{\"name\":\"网络IO\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"rate(redis_net_input_bytes_total{job=\\\"$job\\\"}[5m])\",\"rate(redis_net_output_bytes_total{job=\\\"$job\\\"}[5m])\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":4,\"i\":\"4\"}}", "weight": 0 }, { "id": 81, "group_id": 15, "configs": "{\"name\":\"1分钟5条执行最多命令的次数\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"topk(5, irate(redis_commands_total{job=\\\"$job\\\"} [1m]))\"],\"layout\":{\"h\":2,\"w\":12,\"x\":12,\"y\":4,\"i\":\"5\"}}", "weight": 0 }, { "id": 83, "group_id": 15, "configs": "{\"name\":\"max_over_time\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"max(max_over_time(redis_uptime_in_seconds{job=\\\"$job\\\"}[5m]))\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":6,\"i\":\"6\"}}", "weight": 0 } ] }, { "id": 0, "dashboard_id": 0, "name": "Key", "weight": 1, "charts": [ { "id": 271, "group_id": 108, "configs": "{\"name\":\"有效的key数量\",\"mode\":\"prometheus\",\"prome_ql\":[\"sum (redis_db_keys) - sum (redis_db_keys_expiring) \"],\"layout\":{\"h\":2,\"w\":8,\"x\":0,\"y\":0,\"i\":\"0\"}}", "weight": 0 }, { "id": 272, "group_id": 108, "configs": "{\"name\":\"过期的key数量\",\"mode\":\"prometheus\",\"prome_ql\":[\"sum (redis_db_keys_expiring{job=\\\"$job\\\",instance=\\\"$instance\\\"}) \"],\"layout\":{\"h\":2,\"w\":8,\"x\":8,\"y\":0,\"i\":\"1\"}}", "weight": 0 }, { "id": 273, "group_id": 108, "configs": "{\"name\":\"每个库里的key数量\",\"mode\":\"nightingale\",\"metric\":[\"redis_db_keys\"],\"tags\":{},\"layout\":{\"h\":2,\"w\":8,\"x\":16,\"y\":0,\"i\":\"2\"}}", "weight": 0 } ] } ] } ]
如果用不使用n9e,也可以使用grafana绘图,方法如下:
模板
我使用763 这个模板
https://grafana.com/grafana/d
ashboards/763
添加到grafana
(略)
查看
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。