当前位置:   article > 正文

几种常见的窗函数_hanning减去 rectangle

hanning减去 rectangle

几种常用的窗函数的比较

名称

特点

应用

矩形窗

Rectangle

矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。频率识别精度最高,幅值识别精度最低,所以矩形窗不是一个理想的窗。

如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等,也可以用在阶次分析中。

汉宁窗

Hanning

又称升余弦窗。主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。它与矩形窗相比,泄漏、波动都减小了,并且选择性也提高。

是很有用的窗函数。如果测试信号有多个频率分量,频谱表现的十分复杂,且测试的目的更多关注频率点而非能量的大小,需要选择汉宁窗。如果被测信号是随机或者未知的,选择汉宁窗。

海明窗

(汉明窗)

Hamming

与汉宁窗都是余弦窗,又称改进的升余弦窗,只是加权系数不同,使旁瓣达到更小。但其旁瓣衰减速度比汉宁窗衰减速度慢。

与汉明窗类似,也是很有用的窗函数。

平顶窗

Flap Top

平顶窗在频域时的表现就象它的名称一样有非常小的通带波动。

由于在幅度上有较小的误差,所以这个窗可以用在校准上。

凯塞窗

Kaiser

定义了一组可调的由零阶贝塞尔Bessel 函数构成的窗函数,通过调整参数β可以在主瓣宽度和旁瓣衰减之间自由选择它们的比重。对于某一长度的Kaiser 窗,给定β,则旁瓣高度也就固定了。

 

布莱克曼窗

Blackman

二阶升余弦窗,主瓣宽,旁瓣比较低,但等效噪声带宽比汉宁窗要大一点,波动却小一点。频率识别精度最低,但幅值识别精度最高,有更好的选择性。

常用来检测两个频率相近幅度不同的信号。

高斯窗

Gaussian

是一种指数窗。主瓣较宽,故而频率分辨力低;无负的旁瓣,第一旁瓣衰减达一55dB。常被用来截短一些非周期信号,如指数衰减信号等。

对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。

三角窗

(费杰窗)

Fejer

是幂窗的一次方形式。与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。

如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;

切比雪夫窗(Chebyshev)

在给定旁瓣高度下,Chebyshev窗的主瓣宽度最小,具有等波动性,也就是说,其所有的旁瓣都具有相等的高度。

 

下面是几种窗函数归一化DTFT幅度的MATLAB程序:

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号