赞
踩
Qwen2是通义千问团队最近开源的大语言模型,由阿里云通义实验室研发。
以Qwen2作为基座大模型,通过指令微调的方式做高精度的命名实体识别(NER),是学习入门LLM微调、建立大模型认知的非常好的任务。
使用LoRA方法训练,1.5B模型对显存要求不高,10GB左右就可以跑。
在本文中,我们会使用 Qwen2-1.5b-Instruct 模型在 中文NER 数据集上做指令微调训练,同时使用SwanLab监控训练过程、评估模型效果。
大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。
指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。
在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的NLP任务。所以这类任务的应用场景覆盖了以往NLP模型的场景,甚至很多团队拿它来标注互联网数据。
命名实体识别 (NER) 是一种NLP技术,主要用于识别和分类文本中提到的重要信息(关键词)。这些实体可以是人名、地名、机构名、日期、时间、货币值等等。 NER 的目标是将文本中的非结构化信息转换为结构化信息,以便计算机能够更容易地理解和处理。
NER 也是一项非常实用的技术,包括在互联网数据标注、搜索引擎、推荐系统、知识图谱、医疗保健等诸多领域有广泛应用。
本案例基于Python>=3.8
,请在您的计算机上安装好Python,并且有一张英伟达显卡(显存要求并不高,大概10GB左右就可以跑)。
我们需要安装以下这几个Python库,在这之前,请确保你的环境内已安装好了pytorch以及CUDA:
txt代码解读复制代码swanlab
modelscope
transformers
datasets
peft
accelerate
pandas
一键安装命令:
bash
代码解读
复制代码pip install swanlab modelscope transformers datasets peft pandas accelerate
本案例测试于modelscope1.14.0、transformers4.41.2、datasets2.18.0、peft0.11.1、accelerate0.30.1、swanlab0.3.11
本案例使用的是HuggingFace上的chinese_ner_sft数据集,该数据集主要被用于训练命名实体识别模型。
chinese_ner_sft由不同来源、不同类型的几十万条数据组成,应该是我见过收录最齐全的中文NER数据集。
这次训练我们不需要用到它的全部数据,只取其中的CCFBDCI数据集(中文命名实体识别算法鲁棒性评测数据集)进行训练,该数据集包含LOC(地点)、GPE(地理)、ORG(组织)和PER(人名)四种实体类型标注,每条数据的例子如下:
json代码解读复制代码{ "text": "今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。", "entities": [ { "start_idx": 23, "end_idx": 25, "entity_text": "中国", "entity_label": "GPE", "entity_names": ["地缘政治实体", "政治实体", "地理实体", "社会实体"]}, { "start_idx": 25, "end_idx": 28, "entity_text": "外交部", "entity_label": "ORG", "entity_names": ["组织", "团体", "机构"] }, { "start_idx": 30, "end_idx": 33, "entity_text": "唐家璇", "entity_label": "PER", "entity_names": ["人名", "姓名"] }, ... ], "data_source": "CCFBDCI" }
其中text
是输入的文本,entities
是文本抽取出的实体。我们的目标是希望微调后的大模型能够根据由text
组成的提示词,预测出一个json格式的实体信息:
txt代码解读复制代码输入:今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。
大模型输出:{"entity_text":"中国", "entity_label":"组织"}{"entity_text":"唐家璇", "entity_label":"人名"}...
现在我们将数据集下载到本地目录。下载方式是前往chinese_ner_sft - huggingface下载ccfbdci.jsonl
到项目根目录下即可:
这里我们使用modelscope下载Qwen2-1.5B-Instruct模型(modelscope在国内,所以直接用下面的代码自动下载即可,不用担心速度和稳定性问题),然后把它加载到Transformers中进行训练:
python代码解读复制代码from modelscope import snapshot_download, AutoTokenizer
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
model_id = "qwen/Qwen2-1.5B-Instruct"
model_dir = "./qwen/Qwen2-1___5B-Instruct"
# 在modelscope上下载Qwen模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")
# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16)
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。
这里直接使用SwanLab和Transformers的集成来实现:
python代码解读复制代码from swanlab.integration.huggingface import SwanLabCallback
swanlab_callback = SwanLabCallback(...)
trainer = Trainer(
...
callbacks=[swanlab_callback],
)
如果你是第一次使用SwanLab,那么还需要去swanlab.cn上注册一个账号,在用户设置页面复制你的API Key,然后在训练开始时粘贴进去即可:
开始训练时的目录结构:
txt代码解读复制代码|--- train.py
|--- ccfbdci.jsonl
train.py:
python代码解读复制代码import json import pandas as pd import torch from datasets import Dataset from modelscope import snapshot_download, AutoTokenizer from swanlab.integration.huggingface import SwanLabCallback from peft import LoraConfig, TaskType, get_peft_model from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq import os import swanlab def dataset_jsonl_transfer(origin_path, new_path): """ 将原始数据集转换为大模型微调所需数据格式的新数据集 """ messages = [] # 读取旧的JSONL文件 with open(origin_path, "r") as file: for line in file: # 解析每一行的json数据 data = json.loads(line) input_text = data["text"] entities = data["entities"] match_names = ["地点", "人名", "地理实体", "组织"] entity_sentence = "" for entity in entities: entity_json = dict(entity) entity_text = entity_json["entity_text"] entity_names = entity_json["entity_names"] for name in entity_names: if name in match_names: entity_label = name break entity_sentence += f"""{{"entity_text": "{entity_text}", "entity_label": "{entity_label}"}}""" if entity_sentence == "": entity_sentence = "没有找到任何实体" message = { "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """, "input": f"文本:{input_text}", "output": entity_sentence, } messages.append(message) # 保存重构后的JSONL文件 with open(new_path, "w", encoding="utf-8") as file: for message in messages: file.write(json.dumps(message, ensure_ascii=False) + "\n") def process_func(example): """ 将数据集进行预处理 """ MAX_LENGTH = 384 input_ids, attention_mask, labels = [], [], [] system_prompt = """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体".""" instruction = tokenizer( f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False, ) response = tokenizer(f"{example['output']}", add_special_tokens=False) input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] attention_mask = ( instruction["attention_mask"] + response["attention_mask"] + [1] ) labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] if len(input_ids) > MAX_LENGTH: # 做一个截断 input_ids = input_ids[:MAX_LENGTH] attention_mask = attention_mask[:MAX_LENGTH] labels = labels[:MAX_LENGTH] return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} def predict(messages, model, tokenizer): device = "cuda" text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) return response model_id = "qwen/Qwen2-1.5B-Instruct" model_dir = "./qwen/Qwen2-1___5B-Instruct" # 在modelscope上下载Qwen模型到本地目录下 model_dir = snapshot_download(model_id, cache_dir="./", revision="master") # Transformers加载模型权重 tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16) model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法 # 加载、处理数据集和测试集 train_dataset_path = "ccfbdci.jsonl" train_jsonl_new_path = "ccf_train.jsonl" if not os.path.exists(train_jsonl_new_path): dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path) # 得到训练集 total_df = pd.read_json(train_jsonl_new_path, lines=True) train_df = total_df[int(len(total_df) * 0.1):] train_ds = Dataset.from_pandas(train_df) train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names) config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], inference_mode=False, # 训练模式 r=8, # Lora 秩 lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理 lora_dropout=0.1, # Dropout 比例 ) model = get_peft_model(model, config) args = TrainingArguments( output_dir="./output/Qwen2-NER", per_device_train_batch_size=4, per_device_eval_batch_size=4, gradient_accumulation_steps=4, logging_steps=10, num_train_epochs=2, save_steps=100, learning_rate=1e-4, save_on_each_node=True, gradient_checkpointing=True, report_to="none", ) swanlab_callback = SwanLabCallback( project="Qwen2-NER-fintune", experiment_name="Qwen2-1.5B-Instruct", description="使用通义千问Qwen2-1.5B-Instruct模型在NER数据集上微调,实现关键实体识别任务。", config={ "model": model_id, "model_dir": model_dir, "dataset": "qgyd2021/chinese_ner_sft", }, ) trainer = Trainer( model=model, args=args, train_dataset=train_dataset, data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), callbacks=[swanlab_callback], ) trainer.train() # 用测试集的随机20条,测试模型 # 得到测试集 test_df = total_df[:int(len(total_df) * 0.1)].sample(n=20) test_text_list = [] for index, row in test_df.iterrows(): instruction = row['instruction'] input_value = row['input'] messages = [ {"role": "system", "content": f"{instruction}"}, {"role": "user", "content": f"{input_value}"} ] response = predict(messages, model, tokenizer) messages.append({"role": "assistant", "content": f"{response}"}) result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}" test_text_list.append(swanlab.Text(result_text, caption=response)) swanlab.log({"Prediction": test_text_list}) swanlab.finish()
看到下面的进度条即代表训练开始:
在SwanLab上查看最终的训练结果:
可以看到在2个epoch之后,微调后的qwen2的loss降低到了不错的水平——当然对于大模型来说,真正的效果评估还得看主观效果。
可以看到在一些测试样例上,微调后的qwen2能够给出准确的实体抽取结果:
至此,你已经完成了qwen2在NER任务上的指令微调训练!
训好的模型默认被保存在./output/Qwen2-NER
文件夹下。
推理模型的代码如下:
python代码解读复制代码import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel def predict(messages, model, tokenizer): device = "cuda" text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # 加载原下载路径的tokenizer和model tokenizer = AutoTokenizer.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16) # 加载训练好的Lora模型,将下面的[checkpoint-XXX]替换为实际的checkpoint文件名名称 model = PeftModel.from_pretrained(model, model_id="./output/Qwen2-NER/checkpoint-1700") input_text = "西安电子科技大学的陈志明爱上了隔壁西北工业大学苏春红,他们约定好毕业后去中国的苏州定居。" test_texts = { "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如; {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """, "input": f"文本:{input_text}" } instruction = test_texts['instruction'] input_value = test_texts['input'] messages = [ {"role": "system", "content": f"{instruction}"}, {"role": "user", "content": f"{input_value}"} ] response = predict(messages, model, tokenizer) print(response)
输出结果为:
json代码解读复制代码{"entity_text": "西安电子科技大学", "entity_label": "组织"}
{"entity_text": "陈志明", "entity_label": "人名"}
{"entity_text": "西北工业大学", "entity_label": "组织"}
{"entity_text": "苏春红", "entity_label": "人名"}
{"entity_text": "中国", "entity_label": "地理实体"}
{"entity_text": "苏州", "entity_label": "地理实体"}
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的zi yuan得到学习提升
本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/997090
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。