当前位置:   article > 正文

元学习(Meta Learning)最全论文、视频、书籍资源整理_hands-on meta learning with python: meta learning

hands-on meta learning with python: meta learning using one-shot learning, m

    Meta Learning,叫做元学习或者 Learning to Learn 学会学习,包括Zero-Shot/One-Shot/Few-Shot 学习,模型无关元学习(Model Agnostic Meta Learning)和元强化学习(Meta Reinforcement Learning)。元学习是人工智能领域,继深度学习是人工智能领域,继深度学习 -> 深度强化学习、生成对抗之后,又一个重要的研究分支,也是是近期的研究热点,加州伯克利大学在这方面做了大量工作。

    本文详细整理了元学习相关的经典文章、代码、书籍、博客、视频教程、数据集等其他资源,提供给需要的朋友。

目录

        经典论文和代码

        书籍

        博客

        视频教程

        数据集

        论坛集合

        知名研究者

    

经典论文和代码

    

    资源详细列表如下。

    

    Zero-Shot / One-Shot / Few-Shot 学习

    Siamese Neural Networks for One-shot Image Recognition, (2015), Gregory Koch, Richard Zemel, Ruslan Salakhutdinov.  

    

    Prototypical Networks for Few-shot Learning, (2017), Jake Snell, Kevin Swersky, Richard S. Zemel.  

    

    Gaussian Prototypical Networks for Few-Shot Learning on Omniglot (2017), Stanislav Fort.  

    

    Matching Networks for One Shot Learning, (2017), Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra.  

    

    Learning to Compare: Relation Network for Few-Shot Learning, (2017), Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, Timothy M. Hospedales.  

    

    One-shot Learning with Memory-Augmented Neural Networks, (2016), Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap.  

    

    Optimization as a Model for Few-Shot Learning, (2016), Sachin Ravi and Hugo Larochelle.  

    

    An embarrassingly simple approach to zero-shot learning, (2015), B Romera-Paredes, Philip H. S. Torr.  

    

    Low-shot Learning by Shrinking and Hallucinating Features, (2017), Bharath Hariharan, Ross Girshick.  

    

    Low-shot learning with large-scale diffusion, (2018), Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou.  

    

    Low-Shot Learning with Imprinted Weights, (2018), Hang Qi, Matthew Brown, David G. Lowe.  

    

    One-Shot Video Object Segmentation, (2017), S. Caelles and K.K. Maninis and J. Pont-Tuset and L. Leal-Taixe' and D. Cremers and L. Van Gool.  

    

    One-Shot Learning for Semantic Segmentation, (2017), Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, Byron Boots.  

    

    Few-Shot Segmentation Propagation with Guided Networks, (2018), Kate Rakelly, Evan Shelhamer, Trevor Darrell, Alexei A. Efros, Sergey Levine.  

    

    Few-Shot Semantic Segmentation with Prototype Learning, (2018), Nanqing Dong and Eric P. Xing. 

    

    Dynamic Few-Shot Visual Learning without Forgetting, (2018), Spyros Gidaris, Nikos Komodakis.  

    

    Feature Generating Networks for Zero-Shot Learning, (2017), Yongqin Xian, Tobias Lorenz, Bernt Schiele, Zeynep Akata. 

    

    Meta-Learning Deep Visual Words for Fast Video Object Segmentation, (2019), Harkirat Singh Behl, Mohammad Najafi, Anurag Arnab, Philip H.S. Torr. 

    

    

模型无关元学习

(Model Agnostic Meta Learning)

    Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, (2017), Chelsea Finn, Pieter Abbeel, Sergey Levine.  

    

    Adversarial Meta-Learning, (2018), Chengxiang Yin, Jian Tang, Zhiyuan Xu, Yanzhi Wang.  

    

    On First-Order Meta-Learning Algorithms, (2018), Alex Nichol, Joshua Achiam, John Schulman.  

    

    Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, (2017), Zhenguo Li, Fengwei Zhou, Fei Chen, Hang Li.  

    

    Gradient Agreement as an Optimization Objective for Meta-Learning, (2018), Amir Erfan Eshratifar, David Eigen, Massoud Pedram.  

    

    Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace, (2018), Yoonho Lee, Seungjin Choi.  

    

    A Simple Neural Attentive Meta-Learner, (2018), Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel.  

    

    Personalizing Dialogue Agents via Meta-Learning, (2019), Zhaojiang Lin, Andrea Madotto, Chien-Sheng Wu, Pascale Fung.  

    

    How to train your MAML, (2019), Antreas Antoniou, Harrison Edwards, Amos Storkey.  

    

    Learning to learn by gradient descent by gradient descent, (206), Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas.  

    

    Unsupervised Learning via Meta-Learning, (2019), Kyle Hsu, Sergey Levine, Chelsea Finn.  

    

    Few-Shot Image Recognition by Predicting Parameters from Activations, (2018), Siyuan Qiao, Chenxi Liu, Wei Shen, Alan Yuille.  

    

    One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning, (2018), Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Pieter Abbeel, Sergey Levine,  

    

    MetaGAN: An Adversarial Approach to Few-Shot Learning, (2018), ZHANG, Ruixiang and Che, Tong and Ghahramani, Zoubin and Bengio, Yoshua and Song, Yangqiu. 

    

    Fast Parameter Adaptation for Few-shot Image Captioning and Visual Question Answering,(2018), Xuanyi Dong, Linchao Zhu, De Zhang, Yi Yang, Fei Wu. 

    

    CAML: Fast Context Adaptation via Meta-Learning, (2019), Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson. 

    

    Meta-Learning for Low-resource Natural Language Generation in Task-oriented Dialogue Systems, (2019), Fei Mi, Minlie Huang, Jiyong Zhang, Boi Faltings. 

    

    MIND: Model Independent Neural Decoder, (2019), Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan. 

    

    Toward Multimodal Model-Agnostic Meta-Learning, (2018), Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim. 

    

    Alpha MAML: Adaptive Model-Agnostic Meta-Learning, (2019), Harkirat Singh Behl, Atılım Güneş Baydin, Philip H. S. Torr. 

    

    Online Meta-Learning, (2019), Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine. 

    

元强化学习

(Meta Reinforcement Learning)

    Generalizing Skills with Semi-Supervised Reinforcement Learning, (2017), Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine.  

    

    Guided Meta-Policy Search, (2019), Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn.  

    

    End-to-End Robotic Reinforcement Learning without Reward Engineering, (2019), Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, Sergey Levine.  

    

    Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables, (2019), Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, Sergey Levine.  

    

    Task-Agnostic Dynamics Priors for Deep Reinforcement Learning, (2019), Yilun Du, Karthik Narasimhan. 

    

    Meta Reinforcement Learning with Task Embedding and Shared Policy,(2019), Lin Lan, Zhenguo Li, Xiaohong Guan, Pinghui Wang. 

    

    NoRML: No-Reward Meta Learning, (2019), Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, Chelsea Finn. 

    

    Actor-Critic Algorithms for Constrained Multi-agent Reinforcement Learning, (2019), Raghuram Bharadwaj Diddigi, Sai Koti Reddy Danda, Prabuchandran K. J., Shalabh Bhatnagar. 

    

    Adaptive Guidance and Integrated Navigation with Reinforcement Meta-Learning, (2019), Brian Gaudet, Richard Linares, Roberto Furfaro. 

    

    Watch, Try, Learn: Meta-Learning from Demonstrations and Reward, (2019), Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn. 

    

    Options as responses: Grounding behavioural hierarchies in multi-agent RL, (2019), Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, Joel Z. Leibo. 

    

    Learning latent state representation for speeding up exploration, (2019), Giulia Vezzani, Abhishek Gupta, Lorenzo Natale, Pieter Abbeel. 

    

    Beyond Exponentially Discounted Sum: Automatic Learning of Return Function, (2019), Yufei Wang, Qiwei Ye, Tie-Yan Liu. 

    

    Learning Efficient and Effective Exploration Policies with Counterfactual Meta Policy, (2019), Ruihan Yang, Qiwei Ye, Tie-Yan Liu. 

    

    Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning, (2019), Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Albrecht. 

    

    Learning to Discretize: Solving 1D Scalar Conservation Laws via Deep Reinforcement Learning, (2019), Yufei Wang, Ziju Shen, Zichao Long, Bin Dong. 

    

书籍

    Hands-On Meta Learning with Python: Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow, (2019), Sudharsan Ravichandiran.  

    

博客

    Berkeley Artificial Intelligence Research blog

    

    Meta-Learning: Learning to Learn Fast

    

    Meta-Reinforcement Learning

    

    How to train your MAML: A step by step approach

    

    An Introduction to Meta-Learning

    

    From zero to research — An introduction to Meta-learning

    

    What’s New in Deep Learning Research: Understanding Meta-Learning

    

视频教程

    Chelsea Finn: Building Unsupervised Versatile Agents with Meta-Learning

    

    Sam Ritter: Meta-Learning to Make Smart Inferences from Small Data

    

    Model Agnostic Meta Learning by Siavash Khodadadeh

    

    Meta Learning by Siraj Raval

    

    Meta Learning by Hugo Larochelle

    

    Meta Learning and One-Shot Learning

    

数据集

    最常用的数据集列表:

    

    Omniglot

    mini-ImageNet

    ILSVRC

    FGVC aircraft

    Caltech-UCSD Birds-200-2011

    Check several other datasets by Google here.

    

研讨会

    MetaLearn 2017

    MetaLearn 2018

    MetaLearn 2019

    

知名研究者

    Chelsea Finn, UC Berkeley

    Pieter Abbeel, UC Berkeley

    Erin Grant, UC Berkeley

    Raia Hadsell, DeepMind

    Misha Denil, DeepMind

    Adam Santoro, DeepMind

    Sachin Ravi, Princeton University

    David Abel, Brown University

    Brenden Lake, Facebook AI Research

往期精品内容推荐

Ian Goodfellow访谈实录

全网最具有挑战的NLP训练营是什么样的?

ICLR 2019计算机视觉、NLP、图模型、对抗学习、表示学习和元学习最新技术分享

《自动化机器学习:方法,系统和挑战》-最新版-免费下载

【干货】史上最全的PyTorch学习资源汇总

从入门到精通-Tensorflow深度强化学习课程

深度学习与计算机视觉任务应用综述

自动驾驶系统历史最全解析及行业最新资讯分析

机器学习圣经《模式识别与机器学习(PRML)-2018》pdf分享

好书推荐-《深度学习基础-构建下一代机器学习算法》免费下载

吴恩达-中文完整版《Mechine Learning Yearning》分享

深度学习工业级部署实践:基于Spark部署Tensorflow深度学习模型

NLP圣经《自然语言处理综述》2018最新版推荐

Geoffrey Hinton-AI的革命与未来

合成注意力推理神经网络-Christopher Manning-ICLR2018

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/195025
推荐阅读
相关标签
  

闽ICP备14008679号