赞
踩
爬虫现在的火热程度我就不说了,先说一下这门技术能干什么事儿,主要为以下三方面:
1.爬取数据,进行市场调研和商业分析爬取知乎、豆瓣等网站的优质话题内容;抓取房产网站买卖信息,分析房价变化趋势、做不同区域的房价分析;爬取招聘网站职位信息,分析各行业人才需求情况及薪资水平。
2.作为机器学习、数据挖掘的原始数据比如你要做一个推荐系统,那么你可以去爬取更多维度的数据,做出更好的模型。
3.爬取优质的资源:****图片、文本、视频爬取游戏内的精美图片,获得图片资源以及评论文本数据。掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现。但建议你从一开始就要有一个具体的目标,在目标的驱动下,你的学习才会更加精准和高效。
这里给你一条平滑的、零基础快速入门的学习路径:
了解爬虫是怎么实现的
实现简单的信息爬取
应对特殊网站的反爬虫措施
Scrapy 与 进阶分布式
01了解爬虫是怎么实现的
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来 进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。简单来说,我们向服务器发送请求后,会得到返回的页面,通过解析页面之后,我们可以抽取我们想要的那部分信息,并存储在指定的文档或数据库中。在这部分你可以简单了解 HTTP 协议及网页基础知识,比如 POST\GET、HTML、CSS、JS,简单了解即可,不需要系统学习。
02 实现简单的信息爬取
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议你从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。掌握之后,你会发现爬虫的基本套路都差不多,一般的静态网站根本不在话下,像知乎、豆瓣等网站的公开信息都可以爬取下来。当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化爬取,这样,知乎、时光网、猫途鹰这些动态的网站也基本没问题了。你还需要了解 Python 的基础知识,比如:文件读写操作:用来读取参数、保存爬取内容list(列表)、dict(字典):用来序列化爬取的数据条件判断(if/else):解决爬虫中的判断是否执行循环和迭代(for ……while):用来循环爬虫步骤
03 应对特殊网站的反爬机制
爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
比如我们经常发现有的网站翻页后url并不变化,这通常就是异步加载。我们用开发者工具去分析网页加载信息,通常能够得到意外的收获。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。
04Scrapy 与进阶分布式
使用 requests+xpath 和抓包大法确实可以解决很多网站信息的爬取,但是对于信息量比较大或者需要分模块爬取的话,就会显得寸步难行。后来应用到了强大的 Scrapy 框架,它不仅能便捷地构建 Request,还有强大的 Selector 能够方便地解析 Response,然而最让人惊喜的还是它超高的性能,可以将爬虫工程化、模块化。学会 Scrapy,自己去尝试搭建了简单的爬虫框架,在做大规模数据爬取的时候能够结构化、工程化地思考大规模的爬取问题,这使我可以从爬虫工程的维度去思考问题。再后来开始逐渐接触到分布式爬虫,这个东西听着挺唬人,但其实就是利用多线程的原理让多个爬虫同时工作,能够实现更高的效率。
其实学习到这里,你基本可以说就是一个爬虫老司机了,外行看很难,但其实并没有那么复杂。因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。不过不用担心,我们准备了一门非常系统的爬虫课程,除了为你提供一条清晰的学习路径,我们甄选了最实用的学习资源以及庞大的主流爬虫案例库。短时间的学习,你就能够很好地掌握爬虫这个技能,获取你想得到的数据。
下面这些内容是Python各个应用方向都必备的基础知识,想做爬虫、数据分析或者人工智能,都得先学会他们。任何高大上的东西,都是建立在原始的基础之上。打好基础,未来的路会走得更稳重。所有资料文末免费领取!!!
包含:
计算机基础
python基础
Python入门视频600集:
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
爬虫作为一个热门的方向,不管是在自己兼职还是当成辅助技能提高工作效率,都是很不错的选择。
通过爬虫技术可以将相关的内容收集起来,分析删选后得到我们真正需要的信息。
这个信息收集分析整合的工作,可应用的范畴非常的广泛,无论是生活服务、出行旅行、金融投资、各类制造业的产品市场需求等等,都能够借助爬虫技术获取更精准有效的信息加以利用。
Python爬虫视频资料
清华大学经管学院发布的《中国经济的数字化转型:人才与就业》报告显示,2025年,数据分析人才缺口预计将达230万。
这么大的人才缺口,数据分析俨然是一片广阔的蓝海!起薪10K真的是家常便饭。
企业需要定期将冷数据从业务数据库中转移出来存储到一个专门存放历史数据的仓库里面,各部门可以根据自身业务特性对外提供统一的数据服务,这个仓库就是数据仓库。
传统的数据仓库集成处理架构是ETL,利用ETL平台的能力,E=从源数据库抽取数据,L=将数据清洗(不符合规则的数据)、转化(对表按照业务需求进行不同维度、不同颗粒度、不同业务规则计算进行统计),T=将加工好的表以增量、全量、不同时间加载到数据仓库。
机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。
机器学习的核心是“使用算法解析数据,从中学习,然后对新数据做出决定或预测”。也就是说计算机利用以获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。
机器学习资料:
从基础的语法内容,到非常多深入的进阶知识点,了解编程语言设计,学完这里基本就了解了python入门到进阶的所有的知识点。
到这就基本就可以达到企业的用人要求了,如果大家还不知道去去哪找面试资料和简历模板,我这里也为大家整理了一份,真的可以说是保姆及的系统学习路线了。
但学习编程并不是一蹴而就,而是需要长期的坚持和训练。整理这份学习路线,是希望和大家共同进步,我自己也能去回顾一些技术点。不管是编程新手,还是需要进阶的有一定经验的程序员,我相信都可以从中有所收获。
一蹴而就,而是需要长期的坚持和训练。整理这份学习路线,是希望和大家共同进步,我自己也能去回顾一些技术点。不管是编程新手,还是需要进阶的有一定经验的程序员,我相信都可以从中有所收获。
这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】
或者
【点此链接】领取
了解python的前景:https://blog.csdn.net/SpringJavaMyBatis/article/details/127194835
了解python的兼职副业:https://blog.csdn.net/SpringJavaMyBatis/article/details/127196603
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。