当前位置:   article > 正文

C++内存池

c++内存池

一、内存池的介绍

内存池简单说,是为了减少频繁使用 malloc/free new/delete 等系统调用,造成的性能损耗而设计的。当我们的程序需要频繁地申请和释放内存时,频繁地使用内存管理的系统调用可能会造成性能的瓶颈。内存池的思想是预先申请一大块内存来做一个内存池,之后把内存管理放在应用层执行,当内存池不足时再向系统申请内存,减少系统调用的开销。

我们知道malloc是标准库函数,真正的申请内存动作需要操作系统完成。所以由应用程序到操作系统就需要三层(应用层,标准库,操作系统)。内存池是专为应用程序提供的专属的内存管理器,它属于应用程序层。所以程序申请内存的时候就不需要通过标准库和操作系统,明显降低了开销。

二、设计一个内存池

内存池是一个一个的 block(内存块) 以链表的形式连接起来的。每一个 block 是一块大的内存,当内存池的大小不够分配时,就会向操作系统申请新的block 加入链表。然后在当前block内部,维护一个 freeSlots_ 的链表来记录当前空闲内存单元的位置,该链表的每一项都是对象被释放后归还给内存池的空间。内存池刚创建时freeSlots_ 是空的,之后随着用户创建对象,再将对象释放掉,这时候要把内存归还给内存池,怎么归还呢?就是把指向这个对象的内存的指针加到freeSlots_ 链表的前面。

用户在创建对象的时候,先检查 freeSlots_链表是否为空,不为空(表示有空闲内存)的时候直接取出一项作为分配出的空间,将该地址返回,并且将头信息里的空闲单元改成下一个空闲单元。如果 freeSlots_链表为空(表示没有空闲内存),那就在当前 block 内取出一个 Slot_ 大小的内存分配出去,如果 block 里面的内存已经使用完了呢?就向操作系统申请一个新的 block。内存池工作期间的内存只会增长,并不释放给操作系统。最后直到内存池销毁的时候,才把所有的 block delete 掉。

 三、实现

我们模仿STL的allocator 来实现,先定义标准接口

memory.h

  1. #ifndef MEMORY_POOL_H
  2. #define MEMORY_POOL_H
  3. #include <climits>
  4. #include <cstddef>
  5. template <typename T, size_t BlockSize = 4096>
  6. class MemoryPool
  7. {
  8. public:
  9. /* Member types */
  10. typedef T value_type;
  11. typedef T *pointer;
  12. typedef T &reference;
  13. typedef const T *const_pointer;
  14. typedef const T &const_reference;
  15. typedef std::size_t size_type;
  16. typedef std::ptrdiff_t difference_type;
  17. typedef std::false_type propagate_on_container_copy_assignment;
  18. typedef std::true_type propagate_on_container_move_assignment;
  19. typedef std::true_type propagate_on_container_swap;
  20. template <typename U>
  21. struct rebind
  22. {
  23. typedef MemoryPool<U> other;
  24. };
  25. /* Member functions */
  26. MemoryPool() noexcept;
  27. MemoryPool(const MemoryPool &memoryPool) noexcept;
  28. MemoryPool(MemoryPool &&memoryPool) noexcept;
  29. template <class U>
  30. MemoryPool(const MemoryPool<U> &memoryPool) noexcept;
  31. ~MemoryPool() noexcept;
  32. MemoryPool &operator=(const MemoryPool &memoryPool) = delete;
  33. MemoryPool &operator=(MemoryPool &&memoryPool) noexcept;
  34. pointer address(reference x) const noexcept;
  35. const_pointer address(const_reference x) const noexcept;
  36. // Can only allocate one object at a time. n and hint are ignored
  37. pointer allocate(size_type n = 1, const_pointer hint = 0);
  38. void deallocate(pointer p, size_type n = 1);
  39. size_type max_size() const noexcept;
  40. template <class U, class... Args>
  41. void construct(U *p, Args &&... args);
  42. template <class U>
  43. void destroy(U *p);
  44. template <class... Args>
  45. pointer newElement(Args &&... args);
  46. void deleteElement(pointer p);
  47. private:
  48. union Slot_
  49. {
  50. value_type element;
  51. Slot_ *next;
  52. };
  53. typedef char *data_pointer_;
  54. typedef Slot_ slot_type_;
  55. typedef Slot_ *slot_pointer_;
  56. slot_pointer_ currentBlock_;
  57. slot_pointer_ currentSlot_;
  58. slot_pointer_ lastSlot_;
  59. slot_pointer_ freeSlots_;
  60. size_type padPointer(data_pointer_ p, size_type align) const noexcept;
  61. void allocateBlock();
  62. static_assert(BlockSize >= 2 * sizeof(slot_type_), "BlockSize too small.");
  63. };
  64. #endif // MEMORY_POOL_H

MemoryPool.cpp

  1. #ifndef MEMORY_BLOCK_TCC
  2. #define MEMORY_BLOCK_TCC
  3. #include "MemoryPool.h"
  4. template <typename T, size_t BlockSize>
  5. inline typename MemoryPool<T, BlockSize>::size_type
  6. MemoryPool<T, BlockSize>::padPointer(data_pointer_ p, size_type align)
  7. const noexcept
  8. {
  9. uintptr_t result = reinterpret_cast<uintptr_t>(p);
  10. return ((align - result) % align);
  11. }
  12. template <typename T, size_t BlockSize>
  13. MemoryPool<T, BlockSize>::MemoryPool() noexcept
  14. {
  15. currentBlock_ = nullptr;
  16. currentSlot_ = nullptr;
  17. lastSlot_ = nullptr;
  18. freeSlots_ = nullptr;
  19. }
  20. template <typename T, size_t BlockSize>
  21. MemoryPool<T, BlockSize>::MemoryPool(const MemoryPool &memoryPool) noexcept : MemoryPool()
  22. {
  23. }
  24. template <typename T, size_t BlockSize>
  25. MemoryPool<T, BlockSize>::MemoryPool(MemoryPool &&memoryPool) noexcept
  26. {
  27. currentBlock_ = memoryPool.currentBlock_;
  28. memoryPool.currentBlock_ = nullptr;
  29. currentSlot_ = memoryPool.currentSlot_;
  30. lastSlot_ = memoryPool.lastSlot_;
  31. freeSlots_ = memoryPool.freeSlots;
  32. }
  33. template <typename T, size_t BlockSize>
  34. template <class U>
  35. MemoryPool<T, BlockSize>::MemoryPool(const MemoryPool<U> &memoryPool) noexcept : MemoryPool()
  36. {
  37. }
  38. template <typename T, size_t BlockSize>
  39. MemoryPool<T, BlockSize> &
  40. MemoryPool<T, BlockSize>::operator=(MemoryPool &&memoryPool) noexcept
  41. {
  42. if (this != &memoryPool)
  43. {
  44. std::swap(currentBlock_, memoryPool.currentBlock_);
  45. currentSlot_ = memoryPool.currentSlot_;
  46. lastSlot_ = memoryPool.lastSlot_;
  47. freeSlots_ = memoryPool.freeSlots;
  48. }
  49. return *this;
  50. }
  51. template <typename T, size_t BlockSize>
  52. MemoryPool<T, BlockSize>::~MemoryPool() noexcept
  53. {
  54. slot_pointer_ curr = currentBlock_;
  55. while (curr != nullptr)
  56. {
  57. slot_pointer_ prev = curr->next;
  58. operator delete(reinterpret_cast<void *>(curr));
  59. curr = prev;
  60. }
  61. }
  62. template <typename T, size_t BlockSize>
  63. inline typename MemoryPool<T, BlockSize>::pointer
  64. MemoryPool<T, BlockSize>::address(reference x)
  65. const noexcept
  66. {
  67. return &x;
  68. }
  69. template <typename T, size_t BlockSize>
  70. inline typename MemoryPool<T, BlockSize>::const_pointer
  71. MemoryPool<T, BlockSize>::address(const_reference x)
  72. const noexcept
  73. {
  74. return &x;
  75. }
  76. template <typename T, size_t BlockSize>
  77. void MemoryPool<T, BlockSize>::allocateBlock()
  78. {
  79. // Allocate space for the new block and store a pointer to the previous one
  80. data_pointer_ newBlock = reinterpret_cast<data_pointer_>(operator new(BlockSize));
  81. reinterpret_cast<slot_pointer_>(newBlock)->next = currentBlock_;
  82. currentBlock_ = reinterpret_cast<slot_pointer_>(newBlock);
  83. // Pad block body to staisfy the alignment requirements for elements
  84. data_pointer_ body = newBlock + sizeof(slot_pointer_);
  85. size_type bodyPadding = padPointer(body, alignof(slot_type_));
  86. currentSlot_ = reinterpret_cast<slot_pointer_>(body + bodyPadding);
  87. lastSlot_ = reinterpret_cast<slot_pointer_>(newBlock + BlockSize - sizeof(slot_type_) + 1);
  88. }
  89. template <typename T, size_t BlockSize>
  90. inline typename MemoryPool<T, BlockSize>::pointer
  91. MemoryPool<T, BlockSize>::allocate(size_type n, const_pointer hint)
  92. {
  93. if (freeSlots_ != nullptr)
  94. {
  95. pointer result = reinterpret_cast<pointer>(freeSlots_);
  96. freeSlots_ = freeSlots_->next;
  97. return result;
  98. }
  99. else
  100. {
  101. if (currentSlot_ >= lastSlot_)
  102. allocateBlock();
  103. return reinterpret_cast<pointer>(currentSlot_++);
  104. }
  105. }
  106. template <typename T, size_t BlockSize>
  107. inline void
  108. MemoryPool<T, BlockSize>::deallocate(pointer p, size_type n)
  109. {
  110. if (p != nullptr)
  111. {
  112. reinterpret_cast<slot_pointer_>(p)->next = freeSlots_;
  113. freeSlots_ = reinterpret_cast<slot_pointer_>(p);
  114. }
  115. }
  116. template <typename T, size_t BlockSize>
  117. inline typename MemoryPool<T, BlockSize>::size_type
  118. MemoryPool<T, BlockSize>::max_size()
  119. const noexcept
  120. {
  121. size_type maxBlocks = -1 / BlockSize;
  122. return (BlockSize - sizeof(data_pointer_)) / sizeof(slot_type_) * maxBlocks;
  123. }
  124. template <typename T, size_t BlockSize>
  125. template <class U, class... Args>
  126. inline void
  127. MemoryPool<T, BlockSize>::construct(U *p, Args &&... args)
  128. {
  129. new (p) U(std::forward<Args>(args)...);
  130. }
  131. template <typename T, size_t BlockSize>
  132. template <class U>
  133. inline void
  134. MemoryPool<T, BlockSize>::destroy(U *p)
  135. {
  136. p->~U();
  137. }
  138. template <typename T, size_t BlockSize>
  139. template <class... Args>
  140. inline typename MemoryPool<T, BlockSize>::pointer
  141. MemoryPool<T, BlockSize>::newElement(Args &&... args)
  142. {
  143. pointer result = allocate();
  144. construct<value_type>(result, std::forward<Args>(args)...);
  145. return result;
  146. }
  147. template <typename T, size_t BlockSize>
  148. inline void
  149. MemoryPool<T, BlockSize>::deleteElement(pointer p)
  150. {
  151. if (p != nullptr)
  152. {
  153. p->~value_type();
  154. deallocate(p);
  155. }
  156. }
  157. #endif // MEMORY_BLOCK_TCC

源码:

https://github.com/cacay/MemoryPool

参考:

内存池(memory pool)_书笑生的博客-CSDN博客_内存池

C++11实现高效内存池 - nepu_bin - 博客园

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/292464
推荐阅读
相关标签
  

闽ICP备14008679号