赞
踩
内存池简单说,是为了减少频繁使用 malloc/free new/delete 等系统调用,造成的性能损耗而设计的。当我们的程序需要频繁地申请和释放内存时,频繁地使用内存管理的系统调用可能会造成性能的瓶颈。内存池的思想是预先申请一大块内存来做一个内存池,之后把内存管理放在应用层执行,当内存池不足时再向系统申请内存,减少系统调用的开销。
我们知道malloc是标准库函数,真正的申请内存动作需要操作系统完成。所以由应用程序到操作系统就需要三层(应用层,标准库,操作系统)。内存池是专为应用程序提供的专属的内存管理器,它属于应用程序层。所以程序申请内存的时候就不需要通过标准库和操作系统,明显降低了开销。
内存池是一个一个的 block(内存块) 以链表的形式连接起来的。每一个 block 是一块大的内存,当内存池的大小不够分配时,就会向操作系统申请新的block 加入链表。然后在当前block内部,维护一个 freeSlots_ 的链表来记录当前空闲内存单元的位置,该链表的每一项都是对象被释放后归还给内存池的空间。内存池刚创建时freeSlots_ 是空的,之后随着用户创建对象,再将对象释放掉,这时候要把内存归还给内存池,怎么归还呢?就是把指向这个对象的内存的指针加到freeSlots_ 链表的前面。
用户在创建对象的时候,先检查 freeSlots_链表是否为空,不为空(表示有空闲内存)的时候直接取出一项作为分配出的空间,将该地址返回,并且将头信息里的空闲单元改成下一个空闲单元。如果 freeSlots_链表为空(表示没有空闲内存),那就在当前 block 内取出一个 Slot_ 大小的内存分配出去,如果 block 里面的内存已经使用完了呢?就向操作系统申请一个新的 block。内存池工作期间的内存只会增长,并不释放给操作系统。最后直到内存池销毁的时候,才把所有的 block delete 掉。
我们模仿STL的allocator 来实现,先定义标准接口
memory.h
- #ifndef MEMORY_POOL_H
- #define MEMORY_POOL_H
-
- #include <climits>
- #include <cstddef>
-
- template <typename T, size_t BlockSize = 4096>
- class MemoryPool
- {
- public:
- /* Member types */
- typedef T value_type;
- typedef T *pointer;
- typedef T &reference;
- typedef const T *const_pointer;
- typedef const T &const_reference;
- typedef std::size_t size_type;
- typedef std::ptrdiff_t difference_type;
- typedef std::false_type propagate_on_container_copy_assignment;
- typedef std::true_type propagate_on_container_move_assignment;
- typedef std::true_type propagate_on_container_swap;
-
- template <typename U>
- struct rebind
- {
- typedef MemoryPool<U> other;
- };
-
- /* Member functions */
- MemoryPool() noexcept;
- MemoryPool(const MemoryPool &memoryPool) noexcept;
- MemoryPool(MemoryPool &&memoryPool) noexcept;
- template <class U>
- MemoryPool(const MemoryPool<U> &memoryPool) noexcept;
-
- ~MemoryPool() noexcept;
-
- MemoryPool &operator=(const MemoryPool &memoryPool) = delete;
- MemoryPool &operator=(MemoryPool &&memoryPool) noexcept;
-
- pointer address(reference x) const noexcept;
- const_pointer address(const_reference x) const noexcept;
-
- // Can only allocate one object at a time. n and hint are ignored
- pointer allocate(size_type n = 1, const_pointer hint = 0);
- void deallocate(pointer p, size_type n = 1);
-
- size_type max_size() const noexcept;
-
- template <class U, class... Args>
- void construct(U *p, Args &&... args);
- template <class U>
- void destroy(U *p);
-
- template <class... Args>
- pointer newElement(Args &&... args);
- void deleteElement(pointer p);
-
- private:
- union Slot_
- {
- value_type element;
- Slot_ *next;
- };
-
- typedef char *data_pointer_;
- typedef Slot_ slot_type_;
- typedef Slot_ *slot_pointer_;
-
- slot_pointer_ currentBlock_;
- slot_pointer_ currentSlot_;
- slot_pointer_ lastSlot_;
- slot_pointer_ freeSlots_;
-
- size_type padPointer(data_pointer_ p, size_type align) const noexcept;
- void allocateBlock();
-
- static_assert(BlockSize >= 2 * sizeof(slot_type_), "BlockSize too small.");
- };
-
- #endif // MEMORY_POOL_H

MemoryPool.cpp
- #ifndef MEMORY_BLOCK_TCC
- #define MEMORY_BLOCK_TCC
-
- #include "MemoryPool.h"
-
- template <typename T, size_t BlockSize>
- inline typename MemoryPool<T, BlockSize>::size_type
- MemoryPool<T, BlockSize>::padPointer(data_pointer_ p, size_type align)
- const noexcept
- {
- uintptr_t result = reinterpret_cast<uintptr_t>(p);
- return ((align - result) % align);
- }
-
- template <typename T, size_t BlockSize>
- MemoryPool<T, BlockSize>::MemoryPool() noexcept
- {
- currentBlock_ = nullptr;
- currentSlot_ = nullptr;
- lastSlot_ = nullptr;
- freeSlots_ = nullptr;
- }
-
- template <typename T, size_t BlockSize>
- MemoryPool<T, BlockSize>::MemoryPool(const MemoryPool &memoryPool) noexcept : MemoryPool()
- {
- }
-
- template <typename T, size_t BlockSize>
- MemoryPool<T, BlockSize>::MemoryPool(MemoryPool &&memoryPool) noexcept
- {
- currentBlock_ = memoryPool.currentBlock_;
- memoryPool.currentBlock_ = nullptr;
- currentSlot_ = memoryPool.currentSlot_;
- lastSlot_ = memoryPool.lastSlot_;
- freeSlots_ = memoryPool.freeSlots;
- }
-
- template <typename T, size_t BlockSize>
- template <class U>
- MemoryPool<T, BlockSize>::MemoryPool(const MemoryPool<U> &memoryPool) noexcept : MemoryPool()
- {
- }
-
- template <typename T, size_t BlockSize>
- MemoryPool<T, BlockSize> &
- MemoryPool<T, BlockSize>::operator=(MemoryPool &&memoryPool) noexcept
- {
- if (this != &memoryPool)
- {
- std::swap(currentBlock_, memoryPool.currentBlock_);
- currentSlot_ = memoryPool.currentSlot_;
- lastSlot_ = memoryPool.lastSlot_;
- freeSlots_ = memoryPool.freeSlots;
- }
- return *this;
- }
-
- template <typename T, size_t BlockSize>
- MemoryPool<T, BlockSize>::~MemoryPool() noexcept
- {
- slot_pointer_ curr = currentBlock_;
- while (curr != nullptr)
- {
- slot_pointer_ prev = curr->next;
- operator delete(reinterpret_cast<void *>(curr));
- curr = prev;
- }
- }
-
- template <typename T, size_t BlockSize>
- inline typename MemoryPool<T, BlockSize>::pointer
- MemoryPool<T, BlockSize>::address(reference x)
- const noexcept
- {
- return &x;
- }
-
- template <typename T, size_t BlockSize>
- inline typename MemoryPool<T, BlockSize>::const_pointer
- MemoryPool<T, BlockSize>::address(const_reference x)
- const noexcept
- {
- return &x;
- }
-
- template <typename T, size_t BlockSize>
- void MemoryPool<T, BlockSize>::allocateBlock()
- {
- // Allocate space for the new block and store a pointer to the previous one
- data_pointer_ newBlock = reinterpret_cast<data_pointer_>(operator new(BlockSize));
- reinterpret_cast<slot_pointer_>(newBlock)->next = currentBlock_;
- currentBlock_ = reinterpret_cast<slot_pointer_>(newBlock);
- // Pad block body to staisfy the alignment requirements for elements
- data_pointer_ body = newBlock + sizeof(slot_pointer_);
- size_type bodyPadding = padPointer(body, alignof(slot_type_));
- currentSlot_ = reinterpret_cast<slot_pointer_>(body + bodyPadding);
- lastSlot_ = reinterpret_cast<slot_pointer_>(newBlock + BlockSize - sizeof(slot_type_) + 1);
- }
-
- template <typename T, size_t BlockSize>
- inline typename MemoryPool<T, BlockSize>::pointer
- MemoryPool<T, BlockSize>::allocate(size_type n, const_pointer hint)
- {
- if (freeSlots_ != nullptr)
- {
- pointer result = reinterpret_cast<pointer>(freeSlots_);
- freeSlots_ = freeSlots_->next;
- return result;
- }
- else
- {
- if (currentSlot_ >= lastSlot_)
- allocateBlock();
- return reinterpret_cast<pointer>(currentSlot_++);
- }
- }
-
- template <typename T, size_t BlockSize>
- inline void
- MemoryPool<T, BlockSize>::deallocate(pointer p, size_type n)
- {
- if (p != nullptr)
- {
- reinterpret_cast<slot_pointer_>(p)->next = freeSlots_;
- freeSlots_ = reinterpret_cast<slot_pointer_>(p);
- }
- }
-
- template <typename T, size_t BlockSize>
- inline typename MemoryPool<T, BlockSize>::size_type
- MemoryPool<T, BlockSize>::max_size()
- const noexcept
- {
- size_type maxBlocks = -1 / BlockSize;
- return (BlockSize - sizeof(data_pointer_)) / sizeof(slot_type_) * maxBlocks;
- }
-
- template <typename T, size_t BlockSize>
- template <class U, class... Args>
- inline void
- MemoryPool<T, BlockSize>::construct(U *p, Args &&... args)
- {
- new (p) U(std::forward<Args>(args)...);
- }
-
- template <typename T, size_t BlockSize>
- template <class U>
- inline void
- MemoryPool<T, BlockSize>::destroy(U *p)
- {
- p->~U();
- }
-
- template <typename T, size_t BlockSize>
- template <class... Args>
- inline typename MemoryPool<T, BlockSize>::pointer
- MemoryPool<T, BlockSize>::newElement(Args &&... args)
- {
- pointer result = allocate();
- construct<value_type>(result, std::forward<Args>(args)...);
- return result;
- }
-
- template <typename T, size_t BlockSize>
- inline void
- MemoryPool<T, BlockSize>::deleteElement(pointer p)
- {
- if (p != nullptr)
- {
- p->~value_type();
- deallocate(p);
- }
- }
-
- #endif // MEMORY_BLOCK_TCC

源码:
https://github.com/cacay/MemoryPool
参考:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。