当前位置:   article > 正文

机器学习数据集!CV、NLP 一应俱全_cv模型公开数据集

cv模型公开数据集

本文介绍一个机器学习大型数据集的汇总网站,网站目前提供约 70 个最新数据集,涵盖了计算机视觉、自然语言理解和音频三大领域。

还在愁到哪里找到需要的机器学习数据集吗?

每年都有很多大型、高质量的数据集发布,其中大多数数据集都发布在各自的网站上,通过谷歌搜索很难找到所有这些数据集。

现在,一位名叫 Nikola Pleša 的开发人员做了一个项目,将所有机器学习的大型数据集收集在一个网站上,方便大家取用。

网站一经发布,好评如潮。网站目前提供约 70 个数据集,涵盖了计算机视觉、自然语言理解和音频三大领域,包括每个数据集的链接、简介、许可类型、论文等,并且作者表示将继续增加数据集数量。

数据集网站:Dataset list - A list of the biggest machine learning datasets

 下面,简要介绍一部分 CV、NLP 的数据集信息。

计算机视觉数据

1. IBM 人脸多样性数据集

IBM 的人脸多样性 (DiF) 数据集是一个庞大而多样化的数据集,旨在促进人脸识别技术中公平性和准确性的研究。DiF 是第一个此类数据集,包含 100 万张带注释的人脸图像。

2. GQA

GQA 数据集包含 2200 万个关于各种日常图像的问题。每个图像都与图像的对象、属性和关系的场景图相关联,这是一个基于 Visual Genome 的新的清晰版本数据集。

3. NVIDIA Flickr-Faces-HQ 数据集

该数据集由 70000 张分辨率为 1024×1024 的高质量 PNG 图像组成,并且在人物的年龄、种族和图像背景方面差异很大。数据集也很好地覆盖了人脸的附件,如眼镜,太阳镜,帽子等。

4. Google Open Images V4

Open Images 是一个包含约 900 万个 URL 图像的数据集,这些图像具有包含数千个类别的图像级标签和边界框注释。

5. Youtube-8M 2018

YouTube- 8M 是一个大型的带标签的视频数据集,由数百万个 YouTube 视频 ID 和来自4700 多个视觉实体的不同词汇表的相关标签组成,包含大量的视频画面信息、音频信息、标签信息。

6. Berkeley Deep Drive (BDD100K)

该数据集包含超过 100k 个驾驶体验视频,每个视频长度为 40 秒,帧数为每秒 30 帧。总图像数比百度 ApolloScape(2018 年 3 月发布) 大 800 倍,比 Mapillary 大 4800倍,比 KITTI 大 8000 倍。

7. ApolloScape

ApolloScape 是一个此前的类似数据集如 KITTI 和 CityScapes 更大、更复杂的数据集。ApolloScape 提供了高分辨率高 10 倍以上的图像,并逐像素标注,包括 26 种不同的可识别对象,如汽车、自行车、行人和建筑物。随着行人和车辆数量的增加,数据集提供了多个级别的场景复杂性,在给定场景中最多多达 100 辆车辆,以及更广泛的具有挑战性的环境,如恶劣天气或极端光照条件。

8. Tencent ML - Images

腾讯发布的 Tencent ML - Images 是目前最大的开源多标签图像数据集,包括17,609,752 个训练图像和 88739 个验证图像 URL,注释多达 11,166 个类别。

9. Fashion MNIST

Fashion-MNIST 是 Zalando 文章图像的一个数据集,包括 60,000 个示例的训练集和10,000 个示例的测试集。每个示例都是一个 28x28 的灰度图像,与 10 个类别的标签相关联。

10. MegaFace

MF2 训练数据集是身份数量上最大的公开可用的面部识别数据集,有 470 万张面部图像,672K 个身份,以及各自的边界框。所有图片均来自 Flickr,并在知识共享协议下许可。

。。。。。。。。。。。。。。。。。

版权原因,完整文章,请参考如下:机器学习数据集!CV、NLP 一应俱全

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/455301
推荐阅读
相关标签
  

闽ICP备14008679号