当前位置:   article > 正文

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型_机器学习故障诊断

机器学习故障诊断

目录

 往期精彩内容:

创新度高!!!需要发论文的同学即买即用

前言

1 数据集和特征提取

1.1 数据集导入

1.2 故障信号特征提取

2超强模型XGBoost——原理介绍

2.1 原理介绍

2.2 特征数据集制作

3 模型评估和对比

3.1 随机森林分类模型

3.2 支持向量机SVM分类模型

3.3 XGBoost分类模型

代码、数据如下:


 往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT_pyts 小波变换 故障-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD_轴承诊断 pytorch-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型-CSDN博客

Python轴承故障诊断入门教学-CSDN博客

创新度高!!!需要发论文的同学即买即用

前言

轴承故障诊断面临着一些挑战。首先,轴承故障信号通常是复杂的非线性信号,包含丰富的频域和时域信息。传统的分析方法往往难以完整地捕捉到故障信号中的特征。其次,轴承故障信号往往伴随着背景噪声和干扰信号,增加了故障信号的提取和识别的难度。最后,轴承故障的类型和程度多种多样,需要一种灵活的方法来区分不同的故障模式。

本文基于凯斯西储大学(CWRU)轴承数据,使用特征提取机器学习方法进行故障识,特征提取是通过从原始信号中提取有意义的特征来减少数据维度,并捕捉到信号的关键信息,机器学习方法能够基于这些特征建立模型,并通过训练和学习来识别不同的故障模式。这种结合可以提高轴承故障诊断的准确性和效率。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集时域图-CSDN博客

1 数据集和特征提取

1.1 数据集导入

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

数据的读取形式以及预处理思路

根据信号时间步长 1024 和 重叠率 0.5制作数据集

形成2330个样本, 单个样本长度 1024,加上一个标签类别。

1.2 故障信号特征提取

(1) 峭度(Kurtosis):衡量信号的尖锐程度,用于检测信号中的高频成分

(2) 熵值(Entropy):衡量信号的复杂程度和随机性,用于检测信号的频谱特性

(3) 分形值(Fractal Dimension):衡量信号的自相似性和复杂度,用于分析信号的分形特征

(4) 波形指标(Waveform Indicators):包括峰值因子、脉冲因子、裕度因子等,用于分析信号的时域特征

(5) 频谱指标(Spectral Indicators):包括峰值频率、能量比值、谱线形指标等,用于分析信号的频域特征

(6) 频域指标(Time-Frequency Indicators):包括瞬时频率、瞬时能量等,用于分析信号的时频特征

(7) 统计特征(Statistical Features):包括均值、方差、偏度等,用于描述信号的统计特性

(8) 小波包特征(Wavelet Packet Features):通过小波变换提取的特征,用于分析信号的时频局部特性

(9) 振动特征(Vibration Features):包括峰值振动、有效值振动等,用于描述信号的振动特性

选择了多种特征提取方法来捕捉信号的不同特征,共提取9类13个特征指标,来作为机器学习模型的训练与识别。

2超强模型XGBoost——原理介绍

2.1 原理介绍

论文链接:

XGBoost | Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

GBoost模型(eXtreme Gradient Boosting)是一种梯度提升框架,由Tianqi Chen在2014年开发,并在机器学习领域广泛应用。XGBoost的核心思想是通过迭代地训练多个弱学习器,并将它们组合起来,实现强大的预测能力。它在梯度提升算法的基础上进行了改进和优化,具有高效、灵活和可扩展的特点。

下面是XGBoost的一些关键特性和原理:

1. 梯度提升:XGBoost使用了梯度提升算法,也称为增强学习(Boosting)算法。它通过迭代地训练多个弱学习器,并通过梯度下降的方式来优化模型的预测能力。每个弱学习器都是在前一个弱学习器的残差上进行训练,从而逐步减小预测误差。

2. 基于树的模型:XGBoost采用了基于树的模型,即决策树。决策树是一种非常灵活和可解释的模型,能够学习到复杂的非线性关系。XGBoost使用了CART(Classification and Regression Trees)作为默认的基学习器,每个决策树都是通过不断划分特征空间来实现分类或回归任务。

3. 正则化策略:为了防止过拟合,XGBoost引入了正则化策略。它通过控制决策树的复杂度来限制模型的学习能力。常用的正则化策略包括限制决策树的最大深度、叶子节点的最小样本数和叶子节点的权重衰减等。

4. 特征选择和分裂:XGBoost在构建决策树时,通过特征选择和分裂来最大化模型的增益。特征选择基于某种评估准则(如信息增益或基尼系数),选择对当前节点的划分最有利的特征。特征分裂则是确定特征划分点的过程,使得划分后的子节点能够最大程度地减小预测误差。

5. 并行计算:为了提高模型的训练速度,XGBoost使用了并行计算的策略。它通过多线程和分布式计算等技术,将训练任务分解为多个子任务,并在不同的处理器上同时进行计算。这样可以加快模型的训练速度,特别是在处理大规模数据集时表现优异。

6. 自定义损失函数:XGBoost允许用户自定义损失函数,以适应不同的任务和需求。用户可以根据具体问题的特点,定义适合的损失函数,并在模型训练过程中使用它。

XGBoost模型通过梯度提升算法和基于树的模型,在许多机器学习任务中都取得了很好的效果,包括分类、回归、排序和推荐等。我们利用其高效、灵活和可扩展的特性,使用XGBoost来构建一个梯度提升模型,通过迭代地训练多个决策树来实现轴承故障识别。

2.2 特征数据集制作

3 模型评估和对比

3.1 随机森林分类模型

模型分数、准确率、精确率、召回率、F1 Score

混淆矩阵

3.2 支持向量机SVM分类模型

模型分数、准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

3.3 XGBoost分类模型

模型分数、准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

实验结果表明,所提取的各种特征都对轴承故障诊断有一定的贡献。峭度、熵值和分形值能够帮助捕捉信号的尖锐程度、复杂程度和自相似性,从而有效地区分不同类型的故障。波形指标、频谱指标和频域指标能够提供信号的时域和频域特征,有助于识别故障的时频特性。统计特征、小波包特征和振动特征则能够描述信号的统计特性和振动特性,从而更好地区分故障模式。

对比可以看出来, XGBoost分类模型性能最好,在训练集、测试集上的表现最优,模型分数也是最高,在轴承故障诊断中取得了良好的效果。通过准确地捕捉到信号的特征和模式,能够对不同类型和程度的轴承故障进行准确的识别和分类,准确率达到100%,速度快,性能好,创新度高。

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

  1. # 加载数据
  2. import torch
  3. from joblib import dump, load
  4. import torch.utils.data as Data
  5. import numpy as np
  6. import pandas as pd
  7. import torch
  8. import torch.nn as nn
  9. # 参数与配置
  10. torch.manual_seed(100) # 设置随机种子,以使实验结果具有可重复性
  11. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  12. #代码和数据集:https://mbd.pub/o/bread/mbd-ZZqbmphr

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/694461
推荐阅读
相关标签
  

闽ICP备14008679号