当前位置:   article > 正文

6.s081 学习实验记录(五)traps

6.s081 学习实验记录(五)traps

一、RISC-V assembly

简介

  • git checkout traps,切换到traps分支
  • user/call.c 文件在我们输入 make fs.img 之后会被汇编为 call.asm 文件,阅读该汇编文件中的函数:f、h、main
  • call.c 中的代码比较简单:
#include "kernel/param.h"
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"

int g(int x) {
  return x+3;
}

int f(int x) {
  return g(x);
}

void main(void) {
  printf("%d %d\n", f(8)+1, 13);
  exit(0);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

问题

我们需要回答以下问题:

  • 哪些寄存器用于传参? 例如,main 函数调用 printf 时持有13 这个参数

    RISC-V 寄存器作用如下图:
    通过main函数的汇编代码,可以知道参数 13 使用 a2 寄存器传递
    在这里插入图片描述
  • main函数对应的汇编代码在哪里调用了函数f ? 函数 g 的调用在哪里?(编译器可能会优化某些函数为内联函数)
    由问题一查看的汇编可知,main函数并未调用函数 f,而是直接由编译器优化得到了结果
  • printf 函数的地址是什么?
    printf 的地址为 0x64a(虚拟地址),main 函数中的调用也能说明这一点
    在这里插入图片描述
    在这里插入图片描述
  • main 函数中使用 jalrprintf 之后,ra寄存器的值是什么?
    jalr 指令执行时,会将 pc + 4 的值存放到 ra 寄存器中作为返回地址,因此ra的值为 0x38
  • 运行下面的代码,输出是什么?(输出取决于大小端,RISC-V为小端模式,如果是大端,相同输出需要将 57616 改为多少?)
    • unsigned int i = 0x00646c72;
    • printf(“H%x Wo%s”, 57616, &i);
    • 输出为:He110 World
    • 因为,57616对应16进制的 0xe110,0x00646c72 以小端存储,实际为 0x6c720064,0x6c对应r0x72对应 l0x64对应d00代表NULL,不显示)。如果是大端,则高地址在高处,因此应该存储为 0x6c720064 或者 0x6c7264
  • 下面的代码,y=后面的输出是什么?为什么?
    • printf(“x=%d y=%d”, 3);
    • 输出为:乱码,因为参数传递时使用的寄存器是确定的,因此如果第二个参数不传递,依然还是会用a2寄存器传递,此时a2中的值是caller中的残留值

二、Backtrace

简介

当发生错误时,打印当前的调用栈。每个函数栈帧包含一个返回地址以及一个指向caller栈帧frame pointer(我理解就是caller的rsp)

kernel/printf.c 中实现一个 backtrace(),在 sys_sleep 中插入对该函数的调用,然后运行 bttest,该用户程序会调用 sleep 系统调用,此时应该打印堆栈

bttestqemu中执行完毕之后,新开一个窗口执行 addr2line -e kernel/kernel (or riscv64-unknown-elf-addr2line -e kernel/kernel),将有如下输出:
在这里插入图片描述
阅读:kernel/sysproc.c:74、kernel/syscall.c:224、kernel/trap.c:85

注意

  • kernel/defs.h 中添加 backtrace() 函数的声明
  • gcc产生汇编时,会将栈指针存放在 s0 寄存器,在kernel/riscv.h 中添加如下代码:
static inline uint64
r_fp()
{
  uint64 x;
  asm volatile("mv %0, s0" : "=r" (x) ); //含义为读取 s0 寄存器中的值,赋值给 x 并返回 x
  return x;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 返回地址位于栈指针 - 8的位置,保存的栈指(caller的栈指针地址)针位于当前函数的栈指针-16处(栈指针即 rbp
  • 你需要识别最后一个栈帧并结束,由于函数栈最大为4KB,因此可以使用 PGROUNDDOWN(fp) (see kernel/riscv.h) 来判断是否到达最后一个函数栈

实验代码

思路:
1、首先 kernel/riscv.h 添加要求的代码,kernel/defs.h 声明 backtrace()
2、 backtrace() 的逻辑为:使用 r_fq() 获取当前栈指针,打印栈指针 - 8 的地址(即调用栈),并 -16,得到上一个栈帧的地址,依次类推,直到地址等于 PGROUNDDOWN(fp) (see kernel/riscv.h)

  • kernel/riscv.h
static inline uint64
r_fp()
{
  uint64 x;
  asm volatile("mv %0, s0" : "=r" (x) ); //含义为读取 s0 寄存器中的值,赋值给 x 并返回 x
  return x;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • kernel/defs.h
void            backtrace(void);
  • 1
  • kernel/printf.c
void backtrace(void){
  // 获取当前栈帧
  uint64 addr = r_fp();
  // 向上遍历
  while(addr != PGROUNDDOWN(addr)){
    printf("%p\n", *(uint64 *)(addr - 8));
    addr = *(uint64 *)(addr - 16);
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • kernel/sysproc.c
uint64
sys_sleep(void)
{
  int n;
  uint ticks0;

  argint(0, &n);
  //...其他代码
  backtrace();
  return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

实验结果

在这里插入图片描述

在这里插入图片描述

三、Alarm

简介

添加一项新的功能,定时报警,即简单的用户级中断/故障处理程序。为以后缺页中断打下基础。

添加一个新的系统调用 sigalarm(interval, handler),如果用户态应用调用 sigalarm(n, fn),那么每当该程序消耗 ncpu ticks,内核会调用一次 fn 。当调用 sigalarm(0, 0) 时停止。

注意

  • makefile 中添加 user/alarmtest.c
  • 正确的结果输出如下:
    在这里插入图片描述

实验代码

思路:proc中添加三个字段,分别记录用户设置的tickscur_ticks以及callback,系统调用则是设置进程的 ticks 以及callback,在处理时钟中断时,给当前的进程cur_ticks 加1,判断和ticks是否相等,相等则调用callback

时钟中断的处理函数为 clockintr(),当用户态进程运行时来了时钟中断,调用路径为:usertrap---判断类型---devintr

详细流程:参考 xv6-book 第四章

trap发生时, cpu 硬件会做一些准备 (book:44页),该步骤设置了SIE位, 保存 pc,设置trap原因,进入内核态(但是不切换内核页表以及内核栈),执行 trap 处理函数(stvec寄存器保存的地址)

如果是在用户态发生 trap,此时处理函数为 uservec,该函数保存了用户寄存器以及其他状态,切换内核页表(所以trap发生时,硬件只保证切换到内核态,即cpu设置为管理模式,但是并不会切换页表,切换页表是在trap处理函数中做的),最后跳转到 usertrap()执行。

因此,我们需要在 usertrap 函数中添加对于时钟中断的判断逻辑以及用户callback的调用逻辑(需要保证不可重入,即我们如果在执行 callback 的时候再次被时钟中断trap,此时不应该再次执行callback,所以还需要在proc.h中添加一个字段用于防止重入)。usertrap中本身有对于时钟中断的判断逻辑,即进程调度的部分,具体代码如图(所以照猫画虎即可):
在这里插入图片描述
最后还有一点需要注意,我们的callback函数是应该在用户态运行的(因为内核态无法解析用户态的虚拟地址,所以无法调用callback),此时我们处于内核态,因此我们需要保存上下文切换到用户态执行完callback之后切换回内核态恢复上下文继续usertrap的执行。

如何切换到内核态呢?此时我们借助 usertrapret() 来返回用户态,所以我们需要更改trap的返回地址,当前 trap 的返回地址p->trapframe->epc += 4;(kernel/trap.c:61)。所以,我们首先保存一下当前 trapframe,然后更改 trapframe->epc = callback,这样在 usertrapret() 返回用户态后执行的就是 callback 函数,此时需要注意,callback函数是不能有参数的(因为这不是正常的函数调用)

callback执行成功了,但是我们该如何返回到用户态代码原先的地方执行呢? 因此,实验测试代码中提供了另外一个系统调用 sigreturn(),来让我们重新回到内核态,恢复进入 trap 时的用户上下文,在这一次的 usertrapret() 返回到用户进程原先执行的地方。(xv6 设计的中断、系统调用走相同的调用路径,因此这里可以执行这样的骚操作。)

总体流程:

  • 用户态程序
  • 用户态程序 —> 时钟中断 --> usertrap() (p->trapframe->epc 保存用户态程序的下一条执行语句) —> 保存trapframe 到另外一个地方(假设为A) —> 更改 p->trapframe = callback —> usertrapret() 返回用户态执行callback —> 通过sigreturn() 重新进入trap流程 —> 此时走系统调用路径 ----> sys_sigreturn() 恢复 p->trapframe 为最开始保存的(从A处读取) —>usertrapret() 返回用户态trap中断处继续执行
  • 一次 alarm trap 需要往返内核态两次

代码:

  • kernel/proc.h
// Per-process state
struct proc {
  struct spinlock lock;
  //新增字段
  int ticks; //回调执行所需要ticks
  int cur_ticks; //当前进程的ticks
  void* callback; //回调函数
  struct trapframe backup; //保存trapframe
  int execing; //是否已经在执行了
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • makefile
UPROGS=\
	$U/_alarmtest\
  • 1
  • 2
  • user/user.h
int sigalarm(int ticks, void (*callback)());
int sigreturn(void);
  • 1
  • 2
  • user/usys.pl
entry("sigalarm");
entry("sigreturn");
  • 1
  • 2
  • kernel/syscall.h
#define SYS_sigalarm  22
#define SYS_sigreturn  23
  • 1
  • 2
  • kernel/syscall.c
extern uint64 sys_mkdir(void);
extern uint64 sys_close(void);
//新增
extern uint64 sys_sigalarm(void);
extern uint64 sys_sigreturn(void);

static uint64 (*syscalls[])(void) = {
//其他
[SYS_mkdir]   sys_mkdir,
[SYS_close]   sys_close,
// 新增
[SYS_sigalarm]   sys_sigalarm,
[SYS_sigreturn]   sys_sigreturn,
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • kernel/sysproc.c
uint64
sys_sigalarm(void){
  int ticks = 0;
  uint64 callback = 0;
  argint(0,&ticks);
  argaddr(1, &callback);

  struct proc* proc = myproc();
  proc->ticks = ticks;
  proc->callback = (void *)callback;
  proc->execing = 0;
  return 0;
}

uint64
sys_sigreturn(void){
  struct proc* proc = myproc();
  *(proc->trapframe) = proc->backup;
  proc->execing = 0;
  // 由于该函数返回后,返回值保存在a0中,会覆盖trapframe中原来的a0
  // 该函数返回之后就会走 usertrapret() 返回到用户态
  return proc->trapframe->a0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • kernel/trap.c
  if(killed(p))
    exit(-1);
  // 新增代码 
  if(which_dev == 2){
    struct proc* proc = myproc();
    // 设置了ticks 且没有执行
    if(proc->ticks > 0 && proc->execing == 0){
      proc->cur_ticks++;
      if(proc->cur_ticks == proc->ticks){
        proc->execing = 1;
        proc->backup = *(proc->trapframe); //保存trapframe
        proc->trapframe->epc = (uint64)proc->callback;
        proc->cur_ticks = 0;
      }
    }
  }
  // 新增结束
  // give up the CPU if this is a timer interrupt.
  if(which_dev == 2)
    yield();
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

实验结果

  • make qemu
    在这里插入图片描述
  • ./grade-lab-traps running alarmtest
    在这里插入图片描述
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/76690
推荐阅读
相关标签
  

闽ICP备14008679号