赞
踩
教程链接:https://www.bilibili.com/video/BV1Ve4y157pC/?p=2&vd_source=759a4e59a9e315c4575a2b4d97dfae44
import argparse import logging import math import os import random import time from copy import deepcopy from pathlib import Path from threading import Thread import numpy as np import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from tensorboardX import SummaryWriter from tqdm import tqdm import test # import test.py to get mAP after each epoch from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.datasets import create_dataloader from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ check_requirements, print_mutation, set_logging, one_cycle, colorstr from utils.google_utils import attempt_download from utils.loss import ComputeLoss, ComputeLossOTA from utils.plots import plot_images, plot_labels, plot_results, plot_evolution from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume logger = logging.getLogger(__name__) def train(hyp, opt, device, tb_writer=None): logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) save_dir, epochs, batch_size, total_batch_size, weights, rank = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank # Directories wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.dump(vars(opt), f, sort_keys=False) # Configure plots = not opt.evolve # create plots cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict is_coco = opt.data.endswith('coco.yaml') # Logging- Doing this before checking the dataset. Might update data_dict loggers = {'wandb': None} # loggers dict if rank in [-1, 0]: opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb data_dict = wandb_logger.data_dict if wandb_logger.wandb: weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 4 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if hasattr(v, 'im'): if hasattr(v.im, 'implicit'): pg0.append(v.im.implicit) else: for iv in v.im: pg0.append(iv.implicit) if hasattr(v, 'imc'): if hasattr(v.imc, 'implicit'): pg0.append(v.imc.implicit) else: for iv in v.imc: pg0.append(iv.implicit) if hasattr(v, 'imb'): if hasattr(v.imb, 'implicit'): pg0.append(v.imb.implicit) else: for iv in v.imb: pg0.append(iv.implicit) if hasattr(v, 'imo'): if hasattr(v.imo, 'implicit'): pg0.append(v.imo.implicit) else: for iv in v.imo: pg0.append(iv.implicit) if hasattr(v, 'ia'): if hasattr(v.ia, 'implicit'): pg0.append(v.ia.implicit) else: for iv in v.ia: pg0.append(iv.implicit) if hasattr(v, 'attn'): if hasattr(v.attn, 'logit_scale'): pg0.append(v.attn.logit_scale) if hasattr(v.attn, 'q_bias'): pg0.append(v.attn.q_bias) if hasattr(v.attn, 'v_bias'): pg0.append(v.attn.v_bias) if hasattr(v.attn, 'relative_position_bias_table'): pg0.append(v.attn.relative_position_bias_table) if hasattr(v, 'rbr_dense'): if hasattr(v.rbr_dense, 'weight_rbr_origin'): pg0.append(v.rbr_dense.weight_rbr_origin) if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'): pg0.append(v.rbr_dense.weight_rbr_avg_conv) if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'): pg0.append(v.rbr_dense.weight_rbr_pfir_conv) if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'): pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1) if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'): pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2) if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'): pg0.append(v.rbr_dense.weight_rbr_gconv_dw) if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'): pg0.append(v.rbr_dense.weight_rbr_gconv_pw) if hasattr(v.rbr_dense, 'vector'): pg0.append(v.rbr_dense.vector) if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if rank in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) # Process 0 if rank in [-1, 0]: testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5, prefix=colorstr('val: '))[0] if not opt.resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: #plot_labels(labels, names, save_dir, loggers) if tb_writer: tb_writer.add_histogram('classes', c, 0) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and rank != -1: model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank, # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698 find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules())) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss_ota = ComputeLossOTA(model) # init loss class compute_loss = ComputeLoss(model) # init loss class logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' f'Using {dataloader.num_workers} dataloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') torch.save(model, wdir / 'init.pt') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if rank in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 10: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() # if tb_writer: # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph elif plots and ni == 10 and wandb_logger.wandb: wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ # end epoch ---------------------------------------------------------------------------------------------------- # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # DDP process 0 or single-GPU if rank in [-1, 0]: # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, times = test.test(data_dict, batch_size=batch_size * 2, imgsz=imgsz_test, model=ema.ema, single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss, is_coco=is_coco) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss if len(opt.name) and opt.bucket: os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) # Log tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if tb_writer: tb_writer.add_scalar(tag, x, epoch) # tensorboard if wandb_logger.wandb: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not opt.nosave) or (final_epoch and not opt.evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(model.module if is_parallel(model) else model).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (best_fitness == fi) and (epoch >= 200): torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch)) if epoch == 0: torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) elif ((epoch+1) % 25) == 0: torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) elif epoch >= (epochs-5): torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) if wandb_logger.wandb: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model( last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: # Plots if plots: plot_results(save_dir=save_dir) # save as results.png if wandb_logger.wandb: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) # Test best.pt logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) if opt.data.endswith('coco.yaml') and nc == 80: # if COCO for m in (last, best) if best.exists() else (last): # speed, mAP tests results, _, _ = test.test(opt.data, batch_size=batch_size * 2, imgsz=imgsz_test, conf_thres=0.001, iou_thres=0.7, model=attempt_load(m, device).half(), single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, save_json=True, plots=False, is_coco=is_coco) # Strip optimizers final = best if best.exists() else last # final model for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if opt.bucket: os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload if wandb_logger.wandb and not opt.evolve: # Log the stripped model wandb_logger.wandb.log_artifact(str(final), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['last', 'best', 'stripped']) wandb_logger.finish_run() else: dist.destroy_process_group() torch.cuda.empty_cache() return results if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='D:/pytorch-yolov7-main/yolov7.pt', help='initial weights path') # 要加载的预训练模型 parser.add_argument('--cfg', type=str, default='D:/pytorch-yolov7-main/cfg/training/yolov7.yaml', help='model.yaml path') # 网络结构的yaml文件 parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--batch-size', type=int, default=2, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') # 选择是否经过一个矩形训练,正常经过resize得到的是(640, 640),可能你得到的是个长方形,矩形训练就是补零 parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') # 是否继续断点运行 parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # 不保存 parser.add_argument('--notest', action='store_true', help='only test final epoch') # 不做测试 parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') # 不进行自动anchor的调整,一般都要保存,测试,自动调整anchor parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') # 这个不需要,进化,就是说你的超参数是否合理,对超参数重新迭代,这个过程很慢 parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') # 与下载相关,不需要 parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') # 是否提前把数据缓存到内存当中 parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') # 图像权重,经常识别错的图像算损失函数的时候权重大一些 parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 指定设备,单卡多卡都可以 parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') # 每个几次迭代是否需要把你的输入图像大小改变一下,比如640变成480,这个需要根据自己的任务来删去或保存 parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') # 是否是多个类别的训练,这个不用指定? parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') # 是否使用adam,教程是用的是sgd parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') # 是否用跨卡的bn,分部时可加上 parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') parser.add_argument('--workers', type=int, default=4, help='maximum number of dataloader workers') # 如果报错,改成0,没报错根据设备性能调整 parser.add_argument('--project', default='runs/train', help='save to project/name') # 保存的路径 parser.add_argument('--entity', default=None, help='W&B entity') # 这是做可视化相关的东西 parser.add_argument('--name', default='exp', help='save to project/name') # 保存的名字,这个和上面两个都不用改 parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') # 是否覆盖,不用改 parser.add_argument('--quad', action='store_true', help='quad dataloader') # 这个改了之后普遍会让结果下降,如果图像比较大可能需要指定,小于640的就不用指定了。 parser.add_argument('--linear-lr', action='store_true', help='linear LR') # 学习率的衰减,是否做线性衰减 parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') # 标签平滑 parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') # 与上传和wnb相关的,做一些日志和可视化展示用到的 parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') # 也是做日志的展示 parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') # 自己指定,隔多少次保存,默认是保存最后一次和最好的那次 parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') # 跟数据集展示相关的,用不上 # parser.add_argument('--freeze', nargs="+", type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2')# 表示冻住某些层,一般冻住前几层,一般都不加 opt = parser.parse_args() # Set DDP variables opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 set_logging(opt.global_rank) #if opt.global_rank in [-1, 0]: # check_git_status() # check_requirements() # Resume wandb_run = check_wandb_resume(opt) if opt.resume and not wandb_run: # resume an interrupted run ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' apriori = opt.global_rank, opt.local_rank with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate logger.info('Resuming training from %s' % ckpt) else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) opt.name = 'evolve' if opt.evolve else opt.name opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run # DDP mode opt.total_batch_size = opt.batch_size device = select_device(opt.device, batch_size=opt.batch_size) if opt.local_rank != -1: assert torch.cuda.device_count() > opt.local_rank torch.cuda.set_device(opt.local_rank) device = torch.device('cuda', opt.local_rank) dist.init_process_group(backend='nccl', init_method='env://') # distributed backend assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' opt.batch_size = opt.total_batch_size // opt.world_size # Hyperparameters with open(opt.hyp) as f: hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps # Train logger.info(opt) if not opt.evolve: tb_writer = None # init loggers if opt.global_rank in [-1, 0]: prefix = colorstr('tensorboard: ') logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") tb_writer = SummaryWriter(opt.save_dir) # Tensorboard train(hyp, opt, device, tb_writer) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0)} # image mixup (probability) assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' opt.notest, opt.nosave = True, True # only test/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(300): # generations to evolve if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() # weights if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n' f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='D:/pytorch-yolov7-main/yolov7.pt', help='initial weights path') # 要加载的预训练模型 parser.add_argument('--cfg', type=str, default='D:/pytorch-yolov7-main/cfg/training/yolov7.yaml', help='model.yaml path') # 网络结构的yaml文件 parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--batch-size', type=int, default=2, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') # 选择是否经过一个矩形训练,正常经过resize得到的是(640, 640),可能你得到的是个长方形,矩形训练就是补零 parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') # 是否继续断点运行 parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # 不保存 parser.add_argument('--notest', action='store_true', help='only test final epoch') # 不做测试 parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') # 不进行自动anchor的调整,一般都要保存,测试,自动调整anchor parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') # 这个不需要,进化,就是说你的超参数是否合理,对超参数重新迭代,这个过程很慢 parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') # 与下载相关,不需要 parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') # 是否提前把数据缓存到内存当中 parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') # 图像权重,经常识别错的图像算损失函数的时候权重大一些 parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 指定设备,单卡多卡都可以 parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') # 每个几次迭代是否需要把你的输入图像大小改变一下,比如640变成480,这个需要根据自己的任务来删去或保存 parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') # 是否是多个类别的训练,这个不用指定? parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') # 是否使用adam,教程是用的是sgd parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') # 是否用跨卡的bn,分部时可加上 parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') parser.add_argument('--workers', type=int, default=4, help='maximum number of dataloader workers') # 如果报错,改成0,没报错根据设备性能调整 parser.add_argument('--project', default='runs/train', help='save to project/name') # 保存的路径 parser.add_argument('--entity', default=None, help='W&B entity') # 这是做可视化相关的东西 parser.add_argument('--name', default='exp', help='save to project/name') # 保存的名字,这个和上面两个都不用改 parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') # 是否覆盖,不用改 parser.add_argument('--quad', action='store_true', help='quad dataloader') # 这个改了之后普遍会让结果下降,如果图像比较大可能需要指定,小于640的就不用指定了。 parser.add_argument('--linear-lr', action='store_true', help='linear LR') # 学习率的衰减,是否做线性衰减 parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') # 标签平滑 parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') # 与上传和wnb相关的,做一些日志和可视化展示用到的 parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') # 也是做日志的展示 parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') # 自己指定,隔多少次保存,默认是保存最后一次和最好的那次 parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') # 跟数据集展示相关的,用不上 parser.add_argument('--freeze', nargs="+", type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2') # 表示冻住某些层,一般冻住前几层,一般都不加 opt = parser.parse_args()
一般指定前几个就可以了。
if name == ‘main’:
parser = argparse.ArgumentParser()
parser.add_argument(‘–weights’, type=str, default=‘D:/pytorch-yolov7-main/yolov7.pt’, help=‘initial weights path’) # 要加载的预训练模型
parser.add_argument(‘–cfg’, type=str, default=‘D:/pytorch-yolov7-main/cfg/training/yolov7.yaml’, help=‘model.yaml path’) # 网络结构的yaml文件
parser.add_argument(‘–data’, type=str, default=‘data/voc.yaml’, help=‘data.yaml path’)
parser.add_argument(‘–hyp’, type=str, default=‘data/hyp.scratch.p5.yaml’, help=‘hyperparameters path’)
parser.add_argument(‘–epochs’, type=int, default=100)
parser.add_argument(‘–batch-size’, type=int, default=2, help=‘total batch size for all GPUs’)
parser.add_argument(‘–img-size’, nargs=‘+’, type=int, default=[320, 320], help=‘[train, test] image sizes’)
parser.add_argument(‘–rect’, action=‘store_true’, help=‘rectangular training’) # 选择是否经过一个矩形训练,正常经过resize得到的是(640, 640),可能你得到的是个长方形,矩形训练就是补零
parser.add_argument(‘–resume’, nargs=‘?’, const=True, default=False, help=‘resume most recent training’) # 是否继续断点运行
parser.add_argument(‘–nosave’, action=‘store_true’, help=‘only save final checkpoint’) # 不保存
parser.add_argument(‘–notest’, action=‘store_true’, help=‘only test final epoch’) # 不做测试
parser.add_argument(‘–noautoanchor’, action=‘store_true’, help=‘disable autoanchor check’) # 不进行自动anchor的调整,一般都要保存,测试,自动调整anchor
parser.add_argument(‘–evolve’, action=‘store_true’, help=‘evolve hyperparameters’) # 这个不需要,进化,就是说你的超参数是否合理,对超参数重新迭代,这个过程很慢
parser.add_argument(‘–bucket’, type=str, default=‘’, help=‘gsutil bucket’) # 与下载相关,不需要
parser.add_argument(‘–cache-images’, action=‘store_true’, help=‘cache images for faster training’) # 是否提前把数据缓存到内存当中
parser.add_argument(‘–image-weights’, action=‘store_true’, help=‘use weighted image selection for training’) # 图像权重,经常识别错的图像算损失函数的时候权重大一些
parser.add_argument(‘–device’, default=‘’, help=‘cuda device, i.e. 0 or 0,1,2,3 or cpu’) # 指定设备,单卡多卡都可以
parser.add_argument(‘–multi-scale’, action=‘store_true’, help=‘vary img-size +/- 50%%’) # 每个几次迭代是否需要把你的输入图像大小改变一下,比如640变成480,这个需要根据自己的任务来删去或保存
parser.add_argument(‘–single-cls’, action=‘store_true’, help=‘train multi-class data as single-class’) # 是否是多个类别的训练,这个不用指定?
parser.add_argument(‘–adam’, action=‘store_true’, help=‘use torch.optim.Adam() optimizer’) # 是否使用adam,教程是用的是sgd
parser.add_argument(‘–sync-bn’, action=‘store_true’, help=‘use SyncBatchNorm, only available in DDP mode’) # 是否用跨卡的bn,分部时可加上
parser.add_argument(‘–local_rank’, type=int, default=-1, help=‘DDP parameter, do not modify’)
parser.add_argument(‘–workers’, type=int, default=4, help=‘maximum number of dataloader workers’) # 如果报错,改成0,没报错根据设备性能调整
parser.add_argument(‘–project’, default=‘runs/train’, help=‘save to project/name’) # 保存的路径
parser.add_argument(‘–entity’, default=None, help=‘W&B entity’) # 这是做可视化相关的东西
parser.add_argument(‘–name’, default=‘exp’, help=‘save to project/name’) # 保存的名字,这个和上面两个都不用改
parser.add_argument(‘–exist-ok’, action=‘store_true’, help=‘existing project/name ok, do not increment’) # 是否覆盖,不用改
parser.add_argument(‘–quad’, action=‘store_true’, help=‘quad dataloader’) # 这个改了之后普遍会让结果下降,如果图像比较大可能需要指定,小于640的就不用指定了。
parser.add_argument(‘–linear-lr’, action=‘store_true’, help=‘linear LR’) # 学习率的衰减,是否做线性衰减
parser.add_argument(‘–label-smoothing’, type=float, default=0.0, help=‘Label smoothing epsilon’) # 标签平滑
parser.add_argument(‘–upload_dataset’, action=‘store_true’, help=‘Upload dataset as W&B artifact table’) # 与上传和wnb相关的,做一些日志和可视化展示用到的
parser.add_argument(‘–bbox_interval’, type=int, default=-1, help=‘Set bounding-box image logging interval for W&B’) # 也是做日志的展示
parser.add_argument(‘–save_period’, type=int, default=-1, help=‘Log model after every “save_period” epoch’) # 自己指定,隔多少次保存,默认是保存最后一次和最好的那次
parser.add_argument(‘–artifact_alias’, type=str, default=“latest”, help=‘version of dataset artifact to be used’) # 跟数据集展示相关的,用不上
parser.add_argument(‘–freeze’, nargs=“+”, type=int, default=[0], help=‘Freeze layers: backbone of yolov7=50, first3=0 1 2’)# 表示冻住某些层,一般冻住前几层,一般都不加
opt = parser.parse_args()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。