赞
踩
参考网上的各种版本:不考虑偏置项b,那么函数过原点,只需要将训练集的每个样本减去第一个样本,就可以消去b,不必考虑b。
凸函数的定义不是很统一,这里给出西瓜书上使用的定义,P54左下角小字:
不考虑多元函数时:
对于3.18,用公式推导,证明其非凸,最后会等价为证明 e^(-z)为凸函数;
对于3.27,我的想法是分成两部分来证,第一部分直线,是凸函数;第二部分根据二阶导非负容易证明。两个凸函数相加仍然是凸函数。
考虑多元函数时:如果它是凸函数,则其Hessian矩阵为半正定矩阵。如果Hessian矩阵是正定的,则函数是严格凸函数。只需要证明3.18的Hessian矩阵不定,即存在负的特征值;证明3.27的Hessian矩阵半正定或者正定即可。
根据课本6.3,可以将非线性可分数据映射到更高维空间,比如,二维映射到三维空间后,可以用平面进行划分。同时引入核函数来简化计算。
可以参考论文Solving Multiclass Learning Problems via Error-Correcting Output Codes
根据论文 2.3 Error-Correcting Code Design部分,一个好的ECOC二元码应该满足不同行和不同列之间独立,可以通过增加海明距离来实现,同时不同列之间不互为反码。
论文中给出了四种方法来构造一个好的ECOC编码,3 <= k <= 7时,采用穷举法,参考论文中构造k=5时的做法,构造k=4时的ECOC码如下:
COL | |||||||||||||
ROL | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | ||||
2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | ||||
3 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | ||||
4 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
此时的最小海明距离是4,能够纠正1位。可是,题目中说的是9位,从增加行之间的最小海明距离来考虑,我选择了0110和0011,这样行间最小海明距离就是5。不过,新加的两列是前7列中列的反码,加了反而没好处。
根据书上P65页最后一段文字描述,拆分后产生的二分类任务难度相当,训练生成的二分类器出错概率才会相当;
类别越多,可以产生的编码(组合)也越多,不同二分类器产生编码的海明距离只要足够大,就可以实现,类别越多越可能实现。
影响:一个理论纠错性质很好,但是导致的二分类问题很难的编码,与另一个理论纠错性质差一些,但产生的二分类问题很简单的编码,最终产生的模型性能好坏孰优孰劣很难说。
根据P66页左侧小字,对于·OVR、MVM来说,由于对每个类进行了相同的处理,类别不平衡问题的影响相互抵消了。
太菜了,不会推。。。
答案在周志华老师的论文《On Multi-Class Cost-Sensitive Learning》里,在Analysis 和 The RESCALEnew Approach分别对二分类和多分类的代价敏感问题进行了分析。
在Analysis部分推导出了放缩比公式:
公式的含义:
Generally speaking, the optimal rescaling ratio of the i-th class against the j-th class can be defined as Eq. 3, which indicates that the classes should be rescaled in the way that the influence of the i-th class is τopt(i, j) times of that of the j-th class.
二分类时,传统方法等价与上述方法,多分类时而这并不等价,这解释了为什么传统的放缩方法效果不好。
考虑多分类时的放缩比可以得到下面的式子:
将其转化为线性方程组:
将其写成矩阵形式:
基于上面的矩阵,得到最优解的条件:当矩阵的秩小于类别数c 时,可以根据方程组求出权重向量w,放缩后的数据可以由非代价敏感分类器处理;否则,将这个多类别问题划分为满足条件的子问题 。
参考两篇论文:
On Multi-Class Cost-Sensitive Learning
The Foundations of Cost-Sensitive Learning
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。