赞
踩
稀疏支持向量机是一种在支持向量机的基础上,通过引入稀疏性约束,使得模型参数更加稀疏,从而提高模型的可解释性和计算效率的方法。以下是稀疏支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型,一个优化后的模型)的完整分析。
首先,我们回顾线性支持向量机的基本优化问题:
为了处理非线性可分的数据,我们可以使用核函数将数据映射到高维空间,同时引入稀疏性约束。优化问题变为:
常用的核函数有:
- import numpy as np
- import matplotlib.pyplot as plt
- from sklearn.svm import SVC
- from sklearn.datasets import make_classification
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import classification_report
- from sklearn.feature_selection import SelectFromModel
- from sklearn.linear_model import Lasso
- # 生成数据
- X, y = make_classification(n_samples=300, n_features=10, n_informative=5, n_redundant=5, random_state=42)
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
-
- # 未优化的稀疏SVM模型
- model = SVC(kernel='linear', C=1.0)
- model.fit(X_train, y_train)
-
- # 预测与结果分析
- y_pred = model.predict(X_test)
- print("未优化模型分类报告:")
- print(classification_report(y_test, y_pred))
-
- # 可视化结果(仅展示前两个特征)
- plt.figure(figsize=(10, 6))
- plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
- plt.title("未优化的稀疏SVM分类结果", fontname='KaiTi')
- plt.show()
- import matplotlib.pyplot as plt
- from sklearn.svm import SVC
- from sklearn.datasets import make_classification
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import classification_report
- from sklearn.feature_selection import SelectFromModel
- from sklearn.linear_model import Lasso
-
- # 生成数据
- X, y = make_classification(n_samples=300, n_features=10, n_informative=5, n_redundant=5, random_state=42)
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
-
- # 使用Lasso进行特征选择
- lasso = Lasso(alpha=0.1)
- lasso.fit(X_train, y_train)
-
- # 使用SelectFromModel来进行特征选择
- model_selector = SelectFromModel(lasso, prefit=True)
- X_train_selected = model_selector.transform(X_train)
- X_test_selected = model_selector.transform(X_test)
-
- # 优化后的稀疏SVM模型
- model_optimized = SVC(kernel='linear', C=1.0)
- model_optimized.fit(X_train_selected, y_train)
-
- # 预测与结果分析
- y_pred_optimized = model_optimized.predict(X_test_selected)
- print("优化后模型分类报告:")
- print(classification_report(y_test, y_pred_optimized))
-
- # 可视化结果(仅展示前两个特征)
- plt.figure(figsize=(10, 6))
- plt.scatter(X_test_selected[:, 0], X_test_selected[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
- plt.title("优化后的稀疏SVM分类结果", fontname='KaiTi')
- plt.show()

输出结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。