当前位置:   article > 正文

从头开始微调Llama 3.1模型_llama3.1微调

llama3.1微调

image.png

在今天的科技专栏中,我们将深入探讨如何微调Llama 3.1模型,以使其更好地适应您的特定领域数据。微调大型语言模型(如Llama)的主要目的是为了在特定领域的数据上表现更好,从而生成更符合您需求的输出。以下是我们将要介绍的五个主要步骤:

  1. 安装必要的软件包
  2. 准备数据集
  3. 训练模型
  4. 进行推理
  5. 保存模型

第一步:安装必要的软件包

首先,我们需要安装一些必要的软件包unsloth和torch,我们将使用它来训练模型,以及acceleratebitsandbytes等其他工具。值得一提的是,我们使用的是Google Colab提供的免费T4 GPU,这意味着您可以在无需花费任何费用的情况下训练您的模型,这无疑是一个很棒的功能。

!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes
  • 1
  • 2

第二步:准备数据集

在这一部分,我们将加载并准备我们的Llama 3.1模型。首先,我们需要导入必要的软件包,如UNS slothtorch,并设置最大序列长度、数据类型等参数。

import unsloth import FastLanguageModel
import torch

max_sequence_length = 2048
dtype = None
load_in_4bit = True
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

接下来,我们将从UNS sloth加载模型,并使用Laura技术来只更新1%到10%的参数。这样做的好处是能够更高效地进行训练。

model,tokenizer = FastLanguageModel.from_pretrained(
    model_name="unsloth/Meta-Llama-3.1-8B",
    max_seq_length = max_sequence_length ,
    dtype = dtype,
    load_in_4bit = load_in_4bit
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

第三步:训练模型

现在我们已经准备好了数据集,可以开始训练模型了。在这一步中,我们将配置训练参数,并使用Alpaca数据集来进行训练。

from datasets import load_dataset

data = load_dataset('alpaca', split='train')
data = data.rename_column('output', 'response')
  • 1
  • 2
  • 3
  • 4

接下来,我们将配置训练参数,并开始训练模型。

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=data,
)

trainer.train()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

训练完成后,我们可以查看训练的内存和时间统计信息。

print(trainer.state.log_history)
  • 1

第四步:进行推理

训练完成后,我们可以进行推理。首先,我们需要加载模型并对输入进行标记化处理。然后,我们将生成模型的输出。

from transformers import pipeline

inference_pipeline = pipeline('text-generation', model=model)
input_text = "请介绍一下Llama 3.1模型的应用场景。"
outputs = inference_pipeline(input_text)

for i, output in enumerate(outputs):
    print(f"Output {i+1}: {output['generated_text']}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

此外,我们还可以使用Hugging Face的新功能——TextStreamer进行实时流式输出,这样我们就无需等待最终结果。

from transformers import TextStreamer

streamer = TextStreamer(model=model)
input_text = "请介绍一下Llama 3.1模型的应用场景。"
streamer(input_text)
  • 1
  • 2
  • 3
  • 4
  • 5

第五步:保存模型

最后,我们需要保存已经训练好的模型。最好的方法是将其推送到Hugging Face Hub,这样就可以随时访问和使用模型。

model.save_pretrained('path_to_your_model')
tokenizer.save_pretrained('path_to_your_tokenizer')

from huggingface_hub import HfApi

api = HfApi()
api.upload_folder(
    folder_path='path_to_your_model',
    path_in_repo='your_repo_name',
    repo_id='your_username/your_repo_name',
    token='your_huggingface_token'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

如果您希望以不同的格式(如16位、4位或更低的适配器)保存模型,也可以进行相应的配置。

总结

通过以上五个步骤,我们已经完成了Llama 3.1模型的微调。从安装必要的软件包到准备数据集,再到训练模型、进行推理,最后是保存模型,每一步都至关重要。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/964533
推荐阅读
相关标签
  

闽ICP备14008679号