赞
踩
我住的那个城市绿化面积95%,没错就是股市。
抛开炒股技术不说, 那么多股票数据是不是非常难找,找到之后是不是看着密密麻麻的数据是不是头都大了?今天带大家爬取雪球平台的股票数据并将其可视化。
解释器版本: python 3.8
代码编辑器: pycharm
requests: pip install requests
csv
1.确定url地址(链接地址)
2.发送网络请求
3.数据解析(筛选数据)
4.数据的保存(数据库(mysql\mongodb\redis), 本地文件)
打开开发者工具,搜索关键字,找到正确url
import requests # 发送网络请求
import csv
url = f'https://xueqiu.com/service/v5/stock/screener/quote/list?page=1&size=30&order=desc&order_by=amount&exchange=CN&market=CN&type=sha&_=1637908787379'
# 伪装
headers = {
# 浏览器伪装
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'
}
response = requests.get(url, headers=headers)
json_data = response.json()
data_list = json_data['data']['list'] for data in data_list: data1 = data['symbol'] data2 = data['name'] data3 = data['current'] data4 = data['chg'] data5 = data['percent'] data6 = data['current_year_percent'] data7 = data['volume'] data8 = data['amount'] data9 = data['turnover_rate'] data10 = data['pe_ttm'] data11 = data['dividend_yield'] data12 = data['market_capital'] print(data1, data2, data3, data4, data5, data6, data7, data8, data9, data10, data11, data12) data_dict = { '股票代码': data1, '股票名称': data2, '当前价': data3, '涨跌额': data4, '涨跌幅': data5, '年初至今': data6, '成交量': data7, '成交额': data8, '换手率': data9, '市盈率(TTM)': data10, '股息率': data11, '市值': data12, } csv_write.writerow(data_dict)
对比1、2、3页数据url,找到规律
for page in range(1, 56):
url = f'https://xueqiu.com/service/v5/stock/screener/quote/list?page={page}&size=30&order=desc&order_by=amount&exchange=CN&market=CN&type=sha&_=1637908787379'
file = open('data2.csv', mode='a', encoding='utf-8', newline='')
csv_write = csv.DictWriter(file, fieldnames=['股票代码','股票名称','当前价','涨跌额','涨跌幅','年初至今','成交量','成交额','换手率','市盈率(TTM)','股息率','市值'])
csv_write.writeheader()
file.close()
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar
data_df = pd.read_csv('data2.csv')
df = data_df.dropna()
df1 = df[['股票名称', '成交量']]
df2 = df1.iloc[:20]
print(df2['股票名称'].values)
print(df2['成交量'].values)
c = (
Bar()
.add_xaxis(list(df2['股票名称']))
.add_yaxis("股票成交量情况", list(df2['成交量']))
.set_global_opts(
title_opts=opts.TitleOpts(title="成交量图表 - Volume chart"),
datazoom_opts=opts.DataZoomOpts(),
)
.render("data.html")
)
print('数据可视化结果完成,请在当前目录下查找打开 data.html 文件!')
学好 Python爬虫 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python及Python爬虫 的小伙伴们一点帮助!
声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。