P(y|X)=P(y)*P(X|y)/P(X)
样本中的属性相互独立;
原问题的等价问题为:
数据处理
为防止P(y)*P(X|y)的值下溢,对原问题取对数,即:
注意:若某属性值在训练集中没有与某个类同时出现过,则直接P(y)或P(X|y)可能为0,这样计算出P(y)*P(X|y)的值为0,没有可比性,且不便于求对数,因此需要对概率值进行“平滑”处理,常用拉普拉斯修正。
先验概率修正:令Dy表示训练集D中第y类样本组合的集合,N表示训练集D中可能的类别数
即每个类别的样本个数都加 1。
类条件概率:另Dy,xi表示Dc中在第 i 个属性上取值为xi的样本组成的集合,Ni表示第 i 个属性可能的取值数
即该类别中第 i 个属性都增加一个样本。
--------------------------------------------------------------
数据预处理
训练模型
测试样本
函数调用
参考
python朴素贝叶斯分类MNIST数据集
- import struct
- from numpy import *
- import numpy as np
- import time
- def read_image(file_name):
- #先用二进制方式把文件都读进来
- file_handle=open(file_name,"rb") #以二进制打开文档
- file_content=file_handle.read() #读取到缓冲区中
- offset=0
- head = struct.unpack_from('>IIII', file_content, offset) # 取前4个整数,返回一个元组
- offset += struct.calcsize('>IIII')
- imgNum = head[1] #图片数
- rows = head[2] #宽度
- cols = head[3] #高度
-
- images=np.empty((imgNum , 784))#empty,是它所常见的数组内的所有元素均为空,没有实际意义,它是创建数组最快的方法
- image_size=rows*cols#单个图片的大小
- fmt='>' + str(image_size) + 'B'#单个图片的format
-
- for i in range(imgNum):
- images[i] = np.array(struct.unpack_from(fmt, file_content, offset))
- # images[i] = np.array(struct.unpack_from(fmt, file_content, offset)).reshape((rows, cols))
- offset += struct.calcsize(fmt)
- return images
-
- #读取标签
- def read_label(file_name):
- file_handle = open(file_name, "rb") # 以二进制打开文档
- file_content = file_handle.read() # 读取到缓冲区中
-
- head = struct.unpack_from('>II', file_content, 0) # 取前2个整数,返回一个元组
- offset = struct.calcsize('>II')
-
- labelNum = head[1] # label数
- # print(labelNum)
- bitsString = '>' + str(labelNum) + 'B' # fmt格式:'>47040000B'
- label = struct.unpack_from(bitsString, file_content, offset) # 取data数据,返回一个元组
- return np.array(label)
-
- def loadDataSet():
- #mnist
- train_x_filename="train-images-idx3-ubyte"
- train_y_filename="train-labels-idx1-ubyte"
- test_x_filename="t10k-images-idx3-ubyte"
- test_y_filename="t10k-labels-idx1-ubyte"
-
- # #fashion mnist
- # train_x_filename="fashion-train-images-idx3-ubyte"
- # train_y_filename="fashion-train-labels-idx1-ubyte"
- # test_x_filename="fashion-t10k-images-idx3-ubyte"
- # test_y_filename="fashion-t10k-labels-idx1-ubyte"
-
- train_x=read_image(train_x_filename)#60000*784 的矩阵
- train_y=read_label(train_y_filename)#60000*1的矩阵
- test_x=read_image(test_x_filename)#10000*784
- test_y=read_label(test_y_filename)#10000*1
-
- train_x=normalize(train_x)
- test_x=normalize(test_x)
- # #调试的时候让速度快点,就先减少数据集大小
- # train_x=train_x[0:1000,:]
- # train_y=train_y[0:1000]
- # test_x=test_x[0:500,:]
- # test_y=test_y[0:500]
-
- return train_x, test_x, train_y, test_y
-
- def normalize(data):#图片像素二值化,变成0-1分布
- m=data.shape[0]
- n=np.array(data).shape[1]
- for i in range(m):
- for j in range(n):
- if data[i,j]!=0:
- data[i,j]=1
- else:
- data[i,j]=0
- return data
-
- #(1)计算先验概率及条件概率
- def train_model(train_x,train_y,classNum):#classNum是指有10个类别,这里的train_x是已经二值化,
- m=train_x.shape[0]
- n=train_x.shape[1]
- # prior_probability=np.zeros(n)#先验概率
- prior_probability=np.zeros(classNum)#先验概率
- conditional_probability=np.zeros((classNum,n,2))#条件概率
- #计算先验概率和条件概率
- for i in range(m):#m是图片数量,共60000张
- img=train_x[i]#img是第i个图片,是1*n的行向量
- label=train_y[i]#label是第i个图片对应的label
- prior_probability[label]+=1#统计label类的label数量(p(Y=ck),下标用来存放label,prior_probability[label]除以n就是某个类的先验概率
- for j in range(n):#n是特征数,共784个
- temp=img[j].astype(int)#img[j]是0.0,放到下标去会显示错误,只能用整数
-
- conditional_probability[label][j][temp] += 1
-
- # conditional_probability[label][j][img[j]]+=1#统计的是类为label的,在每个列中为1或者0的行数为多少,img[j]的值要么就是0要么就是1,计算条件概率
-
- #将概率归到[1.10001]
- for i in range(classNum):
- for j in range(n):
- #经过二值化的图像只有0,1两种取值
- pix_0=conditional_probability[i][j][0]
- pix_1=conditional_probability[i][j][1]
-
- #计算0,1像素点对应的条件概率
- probability_0=(float(pix_0)/float(pix_0+pix_1))*10000+1
- probability_1 = (float(pix_1)/float(pix_0 + pix_1)) * 10000 + 1
-
- conditional_probability[i][j][0]=probability_0
- conditional_probability[i][j][1]=probability_1
- return prior_probability,conditional_probability
-
- #(2)对给定的x,计算先验概率和条件概率的乘积
- def cal_probability(img,label,prior_probability,conditional_probability):
- probability=int(prior_probability[label])#先验概率
- n=img.shape[0]
- # print(n)
- for i in range(n):#应该是特征数
- probability*=int(conditional_probability[label][i][img[i].astype(int)])
-
- return probability
-
- #确定实例x的类,相当于argmax
- def predict(test_x,test_y,prior_probability,conditional_probability):#传进来的test_x或者是train_x都是二值化后的
- predict_y=[]
- m=test_x.shape[0]
- n=test_x.shape[1]
- for i in range(m):
- img=np.array(test_x[i])#img已经是二值化以后的列向量
- label=test_y[i]
- max_label=0
- max_probability= cal_probability(img,0,prior_probability,conditional_probability)
- for j in range(1,10):#从下标为1开始,因为初始值是下标为0
- probability=cal_probability(img,j,prior_probability,conditional_probability)
- if max_probability<probability:
- max_probability=probability
- max_label=j
- predict_y.append(max_label)#用来记录每行最大概率的label
- return np.array(predict_y)
-
- def cal_accuracy(test_y,predict_y):
- m=test_y.shape[0]
- errorCount=0.0
- for i in range(m):
- if test_y[i]!=predict_y[i]:
- errorCount+=1
- accuracy=1.0-float(errorCount)/m
- return accuracy
-
- if __name__=='__main__':
- classNum=10
- print("Start reading data...")
- time1=time.time()
- train_x, test_x, train_y, test_y=loadDataSet()
- train_x=normalize(train_x)
- test_x=normalize(test_x)
-
- time2=time.time()
- print("read data cost",time2-time1,"second")
-
- print("start training data...")
- prior_probability, conditional_probability=train_model(train_x,train_y,classNum)
- for i in range(classNum):
- print(prior_probability[i])#输出一下每个标签的总共数量
- time3=time.time()
- print("train data cost",time3-time2,"second")
-
- print("start predicting data...")
- predict_y=predict(test_x,test_y,prior_probability,conditional_probability)
- time4=time.time()
- print("predict data cost",time4-time3,"second")
-
- print("start calculate accuracy...")
- acc=cal_accuracy(test_y,predict_y)
- time5=time.time()
- print("accuarcy",acc)
- print("calculate accuarcy cost",time5-time4,"second")