赞
踩
构造一个神经网络含有两个输入,两个隐含层神经元,两个输出神经元。隐藏层和输出元包括权重和偏置。其结构如下:
设置输入和输出数据
(
x
i
,
y
i
)
(x_i,y_i)
(xi,yi)为
(
0.05
,
0.01
)
(0.05,0.01)
(0.05,0.01)和
(
0.1
,
0.99
)
(0.1,0.99)
(0.1,0.99),并为神经元初始化参数,包括权重和偏置。
BP神经网络的目标是优化权重,使神经网络学会如何正确地将任意输入映射到输出。以输入0.05和0.1,输出0.01和0.99为训练集进行测试。
将输入层的0.05和0.10输入到隐藏层,通过初始化的权重和偏差进行计算可得到隐含层的输出。之后通过激活函数对隐含层的输出进行非线性化处理,激活函数使用Sigmoid。
f
(
x
)
=
1
1
+
e
−
x
f(x)=\dfrac{1}{1+e^{-x}}
f(x)=1+e−x1
计算
h
1
h_1
h1过程如下:
n
e
t
h
1
=
w
1
∗
i
1
+
w
2
∗
i
2
+
b
1
∗
1
n
e
t
h
1
=
0.15
∗
0.05
+
0.2
∗
0.1
+
0.35
∗
1
=
0.3775
非线性化处理,经过sigmoid激活函数后得:
out
h
1
=
1
1
+
e
−
n
e
t
h
1
=
1
1
+
e
−
0.3775
=
0.593269992
\text { out }_{h 1}=\frac{1}{1+e^{-net_{h1}}}=\frac{1}{1+e^{-0.3775}}=0.593269992
out h1=1+e−neth11=1+e−0.37751=0.593269992
采用相同的方式计算
h
2
h_2
h2得:
out
h
2
=
0.596884378
\text { out }_{h 2}=0.596884378
out h2=0.596884378
重复上述过程,利用隐含层的输出计算输出层神经元,下面是
o
1
o_1
o1的计算过程:
net
o
1
=
w
5
∗
out
h
1
+
w
6
∗
out
h
2
+
b
2
∗
1
\text { net}_{o 1}=w_{5} * \text { out }_{h 1}+w_{6} * \text { out }_{h 2}+b_{2} * 1
neto1=w5∗ out h1+w6∗ out h2+b2∗1
net o 1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1 = 1.105905967 \text { net}_{o 1}=0.4 * 0.593269992+0.45 * 0.596884378+0.6 * 1=1.105905967 neto1=0.4∗0.593269992+0.45∗0.596884378+0.6∗1=1.105905967
out
o
1
=
1
1
+
e
−
n
e
t
o
1
=
1
1
+
e
−
1.105905967
=
0.75136507
\text { out}_{o 1}=\frac{1}{1+e^{-n e t_{o 1}}}=\frac{1}{1+e^{-1.105905967}}=0.75136507
outo1=1+e−neto11=1+e−1.1059059671=0.75136507
使用同样的方法计算出
o
2
o_2
o2:
out
o
2
=
0.772928465
\text {out}_{o 2}=0.772928465
outo2=0.772928465
使用均方误差(MSE)函数计算神经元的误差,即使用均方误差作为损失函数。
M
S
E
(
y
,
y
′
)
=
∑
i
=
1
n
(
y
i
−
y
i
′
)
2
n
MSE(y,y')=\frac{\sum^n_{i=1}(y_i-y_i')^2}{n}
MSE(y,y′)=n∑i=1n(yi−yi′)2
其中,
y
i
y_i
yi为第 i 个数据的正确答案,
y
i
′
y'_i
yi′为神经网络给出的预测值。在此问题中,
o
1
o_1
o1的期望输出为0.01,但神经网络的真是输出为0.75136507,因此误差为:
E
o
1
=
1
2
(
target
o
1
−
o
u
t
o
1
)
2
=
1
2
(
0.01
−
0.75136507
)
2
=
0.274811083
E_{o 1}=\frac{1}{2}\left(\text { target }_{o 1}-o u t_{o 1}\right)^{2}=\frac{1}{2}(0.01-0.75136507)^{2}=0.274811083
Eo1=21( target o1−outo1)2=21(0.01−0.75136507)2=0.274811083
同理得:
E
o
2
=
0.023560026
E_{o 2}=0.023560026
Eo2=0.023560026
神经网络的总误差为这些神经元的误差和,即为:
E
total
=
E
o
1
+
E
o
2
=
0.274811083
+
0.023560026
=
0.298371109
E_{\text {total }}=E_{o 1}+E_{o 2}=0.274811083+0.023560026=0.298371109
Etotal =Eo1+Eo2=0.274811083+0.023560026=0.298371109
使用BP神经网络的目标是更新网络中的每个神经元的权重和偏置,以使它们得实际输出更接近目标输出,从而最大限度地减少每个输出神经元的错误。
对于 w 5 w_5 w5,需要知道 w 5 w_5 w5的变化量对于总误差变化量的影响,可表示为 ∂ E total ∂ w 5 \frac{\partial E_{\text {total }}}{\partial w_{5}} ∂w5∂Etotal ,即 w 5 w_5 w5的梯度。
通过链式法则可得:
∂
E
total
∂
w
5
=
∂
E
total
∂
out
o
1
∗
∂
out
o
1
∂
net
o
1
∗
∂
net
o
1
∂
w
5
\frac{\partial E_{\text {total }}}{\partial w_{5}}=\frac{\partial E_{\text {total }}}{\partial \text { out }_{o 1}} * \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}} * \frac{\partial \text { net }_{o 1}}{\partial w_{5}}
∂w5∂Etotal =∂ out o1∂Etotal ∗∂ net o1∂ out o1∗∂w5∂ net o1
这是可视化过程:
我们需要解决方程的每一个步骤。
首先要分析输出对总误差的影响:
E
total
=
1
2
(
target
o
1
−
out
o
1
)
2
+
1
2
(
target
o
2
−
out
o
2
)
2
E_{\text {total }}=\frac{1}{2}\left(\text { target}_{o 1}-\text { out }_{o 1}\right)^{2}+\frac{1}{2}\left(\operatorname{target}_{o 2}-\text { out}_{o 2}\right)^{2}
Etotal =21( targeto1− out o1)2+21(targeto2− outo2)2
∂
E
total
∂
o
u
t
o
1
=
2
∗
1
2
(
target
o
1
−
o
u
t
o
1
)
2
−
1
∗
−
1
+
0
\frac{\partial E_{\text {total }}}{\partial o u t_{o 1}}=2 * \frac{1}{2}\left(\text { target}_{o 1}-o u t_{o 1}\right)^{2-1} *-1+0
∂outo1∂Etotal =2∗21( targeto1−outo1)2−1∗−1+0
∂
E
totol
∂
o
u
t
o
1
=
−
(
target
o
1
−
o
u
t
o
1
)
=
−
(
0.01
−
0.75136507
)
=
0.74136507
\frac{\partial E_{\text {totol }}}{\partial o u t_{o 1}}=-\left(\text { target}_{o 1}-o u t_{o 1}\right)=-(0.01-0.75136507)=0.74136507
∂outo1∂Etotol =−( targeto1−outo1)=−(0.01−0.75136507)=0.74136507
对激活函数求偏导得:
out
o
1
=
1
1
+
e
−
net
o
1
\text { out }_{o 1}=\frac{1}{1+e^{-\text {net }_{o 1}}}
out o1=1+e−net o11
∂
out
o
1
∂
net
o
1
=
out
o
1
(
1
−
out
o
1
)
=
0.75136507
(
1
−
0.75136507
)
=
0.186815602
\frac{\partial \text { out}_{o 1}}{\partial \text { net}_{o 1}}=\text { out}_{o 1}\left(1-\text { out}_{o 1}\right)=0.75136507(1-0.75136507)=0.186815602
∂ neto1∂ outo1= outo1(1− outo1)=0.75136507(1−0.75136507)=0.186815602
最后,计算
n
e
t
o
1
net _{o1}
neto1对
w
5
w_5
w5的偏导:
n
e
t
o
1
=
w
5
∗
o
u
t
h
1
+
w
6
∗
out
h
2
+
b
2
∗
1
{net}_{o1}=w_{5} * { out }_{h1}+w_{6} * \text { out }_{h2}+b_{2} * 1
neto1=w5∗outh1+w6∗ out h2+b2∗1
∂
n
e
t
o
1
∂
w
5
=
1
∗
o
u
t
h
1
∗
w
5
(
1
−
1
)
+
0
+
0
=
o
u
t
h
1
=
0.593269992
\frac{\partial{ net}_{o 1}}{\partial w_{5}}=1 * { out}_{h 1} * w_{5}^{(1-1)}+0+0={ out }_{h 1}=0.593269992
∂w5∂neto1=1∗outh1∗w5(1−1)+0+0=outh1=0.593269992
把以上的计算结果乘到一起得:
∂
E
t
a
t
a
l
∂
w
5
=
∂
E
t
o
t
a
l
∂
o
u
t
o
1
∗
∂
o
u
t
o
1
∂
n
e
t
o
1
∗
∂
n
e
t
a
1
∂
w
5
\frac{\partial E_{{tatal }}}{\partial w_{5}}=\frac{\partial E_{{total }}}{\partial { out }_{{o1 }}} * \frac{\partial { out}_{o1}}{\partial net_{o 1}} * \frac{\partial net_{a1}}{\partial w_{5}}
∂w5∂Etatal=∂outo1∂Etotal∗∂neto1∂outo1∗∂w5∂neta1
∂
E
t
o
t
a
l
∂
w
5
=
0.74136507
∗
0.186815602
∗
0.593269992
=
0.082167041
\frac{\partial E_{{total}}}{\partial w_{5}}=0.74136507 * 0.186815602 * 0.593269992=0.082167041
∂w5∂Etotal=0.74136507∗0.186815602∗0.593269992=0.082167041
为了减少误差,我们对权重进行修正,即用当前的权重中减去修正值乘以学习率,此处设置学习率为0.5:
w
5
+
=
w
5
−
η
∗
∂
E
t
o
t
a
l
∂
w
5
=
0.4
−
0.5
∗
0.082167041
=
0.35891648
w_{5}^{+}=w_{5}-\eta * \frac{\partial E_{total}}{\partial w_{5}}=0.4-0.5 * 0.082167041=0.35891648
w5+=w5−η∗∂w5∂Etotal=0.4−0.5∗0.082167041=0.35891648
重复以上步骤可计算出
w
6
w_6
w6、
w
7
w_7
w7和
w
8
w_8
w8:
w
6
+
=
0.408666186
w
7
+
=
0.511301270
w
8
+
=
0.561370121
此时已经计算出输出层的新权重,当计算出隐含层的权重后,对整个网络的权重进行更新,下面计算隐含层的权重。
接下来,继续使用反向传播计算
w
1
w_1
w1、
w
2
w_2
w2、
w
3
w_3
w3和
w
4
w_4
w4。根据链式法则可得:
∂
E
t
o
t
a
l
∂
w
1
=
∂
E
t
o
t
a
l
∂
o
u
t
h
1
∗
∂
o
u
t
h
1
∂
n
e
t
h
1
∗
∂
n
e
t
h
1
∂
w
1
\frac{\partial E_{total}}{\partial w_{1}}=\frac{\partial E_{total}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} * \frac{\partial net_{h1}}{\partial w_{1}}
∂w1∂Etotal=∂outh1∂Etotal∗∂neth1∂outh1∗∂w1∂neth1
可视化图像为:
接下来将采用相似的方式处理隐含层的神经元,但是略有不同,考虑到每个隐含层的神经元的输出连接到多个输出,
o
u
t
h
1
out_{h1}
outh1影响
o
u
t
o
1
out_{o1}
outo1和
o
u
t
o
2
out_{o2}
outo2,因此计算
∂
E
total
d
o
u
t
h
1
\frac{\partial E_{\text {total }}}{{dout}_{h 1}}
douth1∂Etotal 需考虑所有输出神经元:
∂
E
t
o
t
a
l
∂
o
u
t
h
1
=
∂
E
o
1
∂
o
u
t
h
1
+
∂
E
a
2
∂
o
u
t
h
1
\frac{\partial E_{total}}{\partial out_{h 1}}=\frac{\partial E_{o1}}{\partial o u t_{h 1}}+\frac{\partial E_{a 2}}{\partial o u t_{h1}}
∂outh1∂Etotal=∂outh1∂Eo1+∂outh1∂Ea2
其中,
∂
E
o
1
∂
o
u
t
h
1
=
∂
E
o
1
∂
n
e
t
o
1
∗
∂
n
e
t
o
1
∂
o
u
t
h
1
\frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial net_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}}
∂outh1∂Eo1=∂neto1∂Eo1∗∂outh1∂neto1
可通过之前的结果计算
∂
E
o
1
∂
n
e
t
o
1
\frac{\partial E_{o1}}{\partial{ net}_{o 1}}
∂neto1∂Eo1:
∂
E
a
1
∂
n
e
t
o
1
=
∂
E
o
1
∂
o
u
t
o
1
∗
∂
out
t
0
∂
n
e
t
o
1
=
0.74136507
∗
0.186815602
=
0.138498562
\frac{\partial E_{a 1}}{\partial n e t_{o 1}}=\frac{\partial E_{o 1}}{\partial o u t_{o 1}} * \frac{\partial \text { out }_{t_{0}}}{\partial n e t_{o 1}}=0.74136507 * 0.186815602=0.138498562
∂neto1∂Ea1=∂outo1∂Eo1∗∂neto1∂ out t0=0.74136507∗0.186815602=0.138498562
并且,
∂
n
e
t
o
1
∂
o
u
t
h
1
=
w
5
\frac{\partial { net}_{o 1}}{\partial {out}_{h 1}}=w_5
∂outh1∂neto1=w5:
n
e
t
o
1
=
w
5
∗
o
u
t
h
1
+
w
6
∗
o
u
t
h
2
+
b
2
∗
1
{ net}_{o 1}=w_{5} * out_{h 1}+w_{6} * out_{h 2}+b_{2} * 1
neto1=w5∗outh1+w6∗outh2+b2∗1
∂
n
e
t
o
1
∂
o
u
t
h
1
=
w
5
=
0.40
\frac{\partial net_{o 1}}{\partial o u t_{h 1}}=w_{5}=0.40
∂outh1∂neto1=w5=0.40
将其乘起来得:
∂
E
o
1
∂
o
u
t
h
1
=
∂
E
o
1
∂
n
e
t
o
1
∗
∂
n
e
t
o
1
∂
o
u
t
h
1
=
0.138498562
∗
0.40
=
0.055399425
\frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial n e t_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}}=0.138498562 * 0.40=0.055399425
∂outh1∂Eo1=∂neto1∂Eo1∗∂outh1∂neto1=0.138498562∗0.40=0.055399425
同理可得,
∂
E
o
2
∂
o
u
t
h
1
=
−
0.019049119
\frac{\partial E_{o 2}}{\partial o u t_{h 1}}=-0.019049119
∂outh1∂Eo2=−0.019049119
因此,
∂
E
t
o
t
a
l
∂
o
u
t
h
1
=
∂
E
o
1
∂
o
u
t
h
1
+
∂
E
o
2
∂
o
u
t
h
1
=
0.055399425
+
−
0.019049119
=
0.036350306
\frac{\partial E_{total}}{\partial out_{h 1}}=\frac{\partial E_{o 1}}{\partial o u t_{h 1}}+\frac{\partial E_{o 2}}{\partial o u t_{h 1}}=0.055399425+-0.019049119=0.036350306
∂outh1∂Etotal=∂outh1∂Eo1+∂outh1∂Eo2=0.055399425+−0.019049119=0.036350306
现在知道
∂
E
t
o
t
a
l
∂
o
u
t
h
1
\frac{\partial E_{total}}{\partial out_{h 1}}
∂outh1∂Etotal,需要计算出
∂
o
u
t
h
1
∂
n
e
t
h
1
\frac{\partial out_{h 1}}{\partial net_{h 1}}
∂neth1∂outh1和
∂
n
e
t
h
1
∂
w
\frac{\partial n e t_{h 1}}{\partial w}
∂w∂neth1:
o
u
t
h
1
=
1
1
+
e
−
n
e
t
h
1
out_{h 1}=\frac{1}{1+e^{-net_{h1}}}
outh1=1+e−neth11
∂
o
u
t
h
1
∂
n
e
t
h
1
=
o
u
t
h
1
(
1
−
o
u
t
h
1
)
=
0.59326999
(
1
−
0.59326999
)
=
0.241300709
\frac{\partial out_{h 1}}{\partial net_{h 1}}=out_{h 1}\left(1-out_{h 1}\right)=0.59326999(1-0.59326999)=0.241300709
∂neth1∂outh1=outh1(1−outh1)=0.59326999(1−0.59326999)=0.241300709
采用相同的方式计算网络输入
h
1
h_1
h1对
w
w
w的偏导数:
n
e
t
h
1
=
w
1
∗
i
1
+
w
3
∗
i
2
+
b
1
∗
1
net_{h 1}=w_{1} * i_{1}+w_{3} * i_{2}+b_{1} * 1
neth1=w1∗i1+w3∗i2+b1∗1
∂
n
e
t
h
1
∂
w
1
=
i
1
=
0.05
\frac{\partial n e t_{h 1}}{\partial w_{1}}=i_{1}=0.05
∂w1∂neth1=i1=0.05
把它们乘到一起:
∂
E
t
o
t
a
l
∂
w
1
=
∂
E
t
o
t
a
t
∂
o
u
t
h
1
∗
∂
o
u
t
h
1
∂
n
e
t
h
1
∗
∂
n
e
t
h
1
∂
w
1
\frac{\partial E_{total}}{\partial w_{1}}=\frac{\partial E_{totat}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} * \frac{\partial n e t_{h 1}}{\partial w_{1}}
∂w1∂Etotal=∂outh1∂Etotat∗∂neth1∂outh1∗∂w1∂neth1
∂
E
t
o
t
a
l
∂
w
1
=
0.036350306
∗
0.241300709
∗
0.05
=
0.000438568
\frac{\partial E_{total}}{\partial w_{1}}=0.036350306 * 0.241300709 * 0.05=0.000438568
∂w1∂Etotal=0.036350306∗0.241300709∗0.05=0.000438568
现在,可以对
w
1
w_1
w1进行更新:
w
1
+
=
w
1
−
η
∗
∂
E
t
o
t
a
l
∂
w
1
=
0.15
−
0.5
∗
0.000438568
=
0.149780716
w_{1}^{+}=w_{1}-\eta * \frac{\partial E_{total }}{\partial w_{1}}=0.15-0.5 * 0.000438568=0.149780716
w1+=w1−η∗∂w1∂Etotal=0.15−0.5∗0.000438568=0.149780716
重复以上步骤计算
w
2
w_2
w2、
w
3
w_3
w3和
w
4
w_4
w4:
w
2
+
=
0.19956143
w
3
+
=
0.24975114
w
4
+
=
0.29950229
最后,更新所有神经元的权重,当输入
0.05
0.05
0.05和
0.1
0.1
0.1时,网络上的总误差从为
0.298371109
0.298371109
0.298371109转变为
0.291027924
0.291027924
0.291027924。 重复以上过程
10
,
000
10,000
10,000次后,总误差将降到
3.5102
∗
1
0
−
5
3.5102*10^{-5}
3.5102∗10−5。 此时,当输入
0.05
0.05
0.05和
0.1
0.1
0.1时,两个输出神经元输出的结果分别为
0.015912196
0.015912196
0.015912196(期望值为
0.01
0.01
0.01)和
0.984065734
0.984065734
0.984065734(期望值为
0.99
0.99
0.99)。训练
20
,
000
20,000
20,000次后,总误差将降到
7.837
∗
1
0
−
6
7.837*10^{-6}
7.837∗10−6。
import random import math # # Shorthand: # "pd_" as a variable prefix means "partial derivative" # "d_" as a variable prefix means "derivative" # "_wrt_" is shorthand for "with respect to" # "w_ho" and "w_ih" are the index of weights from hidden to output layer neurons and input to hidden layer neurons respectively # # Comment references: # # [1] Wikipedia article on Backpropagation # http://en.wikipedia.org/wiki/Backpropagation#Finding_the_derivative_of_the_error # [2] Neural Networks for Machine Learning course on Coursera by Geoffrey Hinton # https://class.coursera.org/neuralnets-2012-001/lecture/39 # [3] The Back Propagation Algorithm # https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf class NeuralNetwork: LEARNING_RATE = 0.5 def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None): self.num_inputs = num_inputs self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias) self.output_layer = NeuronLayer(num_outputs, output_layer_bias) self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights) self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights) def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights): weight_num = 0 for h in range(len(self.hidden_layer.neurons)): for i in range(self.num_inputs): if not hidden_layer_weights: self.hidden_layer.neurons[h].weights.append(random.random()) else: self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num]) weight_num += 1 def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights): weight_num = 0 for o in range(len(self.output_layer.neurons)): for h in range(len(self.hidden_layer.neurons)): if not output_layer_weights: self.output_layer.neurons[o].weights.append(random.random()) else: self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num]) weight_num += 1 def inspect(self): print('------') print('* Inputs: {}'.format(self.num_inputs)) print('------') print('Hidden Layer') self.hidden_layer.inspect() print('------') print('* Output Layer') self.output_layer.inspect() print('------') def feed_forward(self, inputs): hidden_layer_outputs = self.hidden_layer.feed_forward(inputs) return self.output_layer.feed_forward(hidden_layer_outputs) # Uses online learning, ie updating the weights after each training case def train(self, training_inputs, training_outputs): self.feed_forward(training_inputs) # 1. Output neuron deltas pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons) for o in range(len(self.output_layer.neurons)): # ∂E/∂zⱼ pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o]) # 2. Hidden neuron deltas pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons) for h in range(len(self.hidden_layer.neurons)): # We need to calculate the derivative of the error with respect to the output of each hidden layer neuron # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ d_error_wrt_hidden_neuron_output = 0 for o in range(len(self.output_layer.neurons)): d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h] # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂ pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input() # 3. Update output neuron weights for o in range(len(self.output_layer.neurons)): for w_ho in range(len(self.output_layer.neurons[o].weights)): # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho) # Δw = α * ∂Eⱼ/∂wᵢ self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight # 4. Update hidden neuron weights for h in range(len(self.hidden_layer.neurons)): for w_ih in range(len(self.hidden_layer.neurons[h].weights)): # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih) # Δw = α * ∂Eⱼ/∂wᵢ self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight def calculate_total_error(self, training_sets): total_error = 0 for t in range(len(training_sets)): training_inputs, training_outputs = training_sets[t] self.feed_forward(training_inputs) for o in range(len(training_outputs)): total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o]) return total_error class NeuronLayer: def __init__(self, num_neurons, bias): # Every neuron in a layer shares the same bias self.bias = bias if bias else random.random() self.neurons = [] for i in range(num_neurons): self.neurons.append(Neuron(self.bias)) def inspect(self): print('Neurons:', len(self.neurons)) for n in range(len(self.neurons)): print(' Neuron', n) for w in range(len(self.neurons[n].weights)): print(' Weight:', self.neurons[n].weights[w]) print(' Bias:', self.bias) def feed_forward(self, inputs): outputs = [] for neuron in self.neurons: outputs.append(neuron.calculate_output(inputs)) return outputs def get_outputs(self): outputs = [] for neuron in self.neurons: outputs.append(neuron.output) return outputs class Neuron: def __init__(self, bias): self.bias = bias self.weights = [] def calculate_output(self, inputs): self.inputs = inputs self.output = self.squash(self.calculate_total_net_input()) return self.output def calculate_total_net_input(self): total = 0 for i in range(len(self.inputs)): total += self.inputs[i] * self.weights[i] return total + self.bias # Apply the logistic function to squash the output of the neuron # The result is sometimes referred to as 'net' [2] or 'net' [1] def squash(self, total_net_input): return 1 / (1 + math.exp(-total_net_input)) # Determine how much the neuron's total input has to change to move closer to the expected output # # Now that we have the partial derivative of the error with respect to the output (∂E/∂yⱼ) and # the derivative of the output with respect to the total net input (dyⱼ/dzⱼ) we can calculate # the partial derivative of the error with respect to the total net input. # This value is also known as the delta (δ) [1] # δ = ∂E/∂zⱼ = ∂E/∂yⱼ * dyⱼ/dzⱼ # def calculate_pd_error_wrt_total_net_input(self, target_output): return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input(); # The error for each neuron is calculated by the Mean Square Error method: def calculate_error(self, target_output): return 0.5 * (target_output - self.output) ** 2 # The partial derivate of the error with respect to actual output then is calculated by: # = 2 * 0.5 * (target output - actual output) ^ (2 - 1) * -1 # = -(target output - actual output) # # The Wikipedia article on backpropagation [1] simplifies to the following, but most other learning material does not [2] # = actual output - target output # # Alternative, you can use (target - output), but then need to add it during backpropagation [3] # # Note that the actual output of the output neuron is often written as yⱼ and target output as tⱼ so: # = ∂E/∂yⱼ = -(tⱼ - yⱼ) def calculate_pd_error_wrt_output(self, target_output): return -(target_output - self.output) # The total net input into the neuron is squashed using logistic function to calculate the neuron's output: # yⱼ = φ = 1 / (1 + e^(-zⱼ)) # Note that where ⱼ represents the output of the neurons in whatever layer we're looking at and ᵢ represents the layer below it # # The derivative (not partial derivative since there is only one variable) of the output then is: # dyⱼ/dzⱼ = yⱼ * (1 - yⱼ) def calculate_pd_total_net_input_wrt_input(self): return self.output * (1 - self.output) # The total net input is the weighted sum of all the inputs to the neuron and their respective weights: # = zⱼ = netⱼ = x₁w₁ + x₂w₂ ... # # The partial derivative of the total net input with respective to a given weight (with everything else held constant) then is: # = ∂zⱼ/∂wᵢ = some constant + 1 * xᵢw₁^(1-0) + some constant ... = xᵢ def calculate_pd_total_net_input_wrt_weight(self, index): return self.inputs[index] ### # Blog post example: nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6) for i in range(10000): nn.train([0.05, 0.1], [0.01, 0.99]) print(f"epoch:{i}\terror:{round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.99]]]), 9)}") # XOR example: # training_sets = [ # [[0, 0], [0]], # [[0, 1], [1]], # [[1, 0], [1]], # [[1, 1], [0]] # ] # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1])) # for i in range(10000): # training_inputs, training_outputs = random.choice(training_sets) # nn.train(training_inputs, training_outputs) # print(i, nn.calculate_total_error(training_sets))
参考:https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。