赞
踩
前言:
八大排序,三大查找是《数据结构》当中非常基础的知识点,在这里为了复习顺带总结了一下常见的八种排序算法。
常见的八大排序算法,他们之间关系如下:
他们的性能比较:
下面,利用Python分别将他们进行实现。
直接插入排序的核心思想就是:
将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过。
因此,从上面的描述中我们可以发现,直接插入排序可以用两个循环完成:
第一层循环:遍历待比较的所有数组元素
第二层循环:将本轮选择的元素(selected)与已经排好序的元素(ordered)相比较。
如果:selected > ordered,那么将二者交换
- #直接插入排序
- # -*- coding: UTF-8 -*-
- def insert_sort(L):
- #遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始
- for x in range(1,len(L)):
- #将该元素与已排序好的前序数组依次比较,如果该元素小,则交换
- #range(x-1,-1,-1):从x-1倒序循环到0
- for i in range(x-1,-1,-1):
- #判断:如果符合条件则交换
- if L[i] > L[i+1]:
- temp = L[i+1]
- L[i+1] = L[i]
- L[i] = temp
-
-
希尔排序的算法思想:
将待排序数组按照步长gap进行分组,然后将每组的元素利用直接插入排序的方法进行排序;每次将gap折半减小,循环上述操作;当gap=1时,利用直接插入,完成排序。
同样的,从上面的描述中我们可以发现,希尔排序的总体实现应该由三个循环完成:
第一层循环:将gap依次折半,对序列进行分组,直到gap=1
第二、三层循环:也即直接插入排序所需要的两次循环。具体描述见上。
- #希尔排序
- # -*- coding: UTF-8 -*-
- def insert_shell(L):
- #初始化gap值,此处利用序列长度的一般为其赋值
- gap = (int)(len(L)/2)
- #第一层循环:依次改变gap值对列表进行分组
- while (gap >= 1):
- #下面:利用直接插入排序的思想对分组数据进行排序
- #range(gap,len(L)):从gap开始
- for x in range(gap,len(L)):
- #range(x-gap,-1,-gap):从x-gap开始与选定元素开始倒序比较,每个比较元素之间间隔gap
- for i in range(x-gap,-1,-gap):
- #如果该组当中两个元素满足交换条件,则进行交换
- if L[i] > L[i+gap]:
- temp = L[i+gap]
- L[i+gap] = L[i]
- L[i] =temp
- #while循环条件折半
- gap = (int)(gap/2)
-
-
简单选择排序的基本思想:比较+交换。
1、从待排序序列中,找到关键字最小的元素;
2、如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;
3、从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。
因此我们可以发现,简单选择排序也是通过两层循环实现。
第一层循环:依次遍历序列当中的每一个元素
第二层循环:将遍历得到的当前元素依次与余下的元素进行比较,符合最小元素的条件,则交换。
- # 简单选择排序
- # -*- coding: UTF-8 -*-
- def select_sort(L):
- #依次遍历序列中的每一个元素
- for x in range(0,len(L)):
- #将当前位置的元素定义此轮循环当中的最小值
- minimum = L[x]
- #将该元素与剩下的元素依次比较寻找最小元素
- for i in range(x+1,len(L)):
- if L[i] < minimum:
- temp = L[i];
- L[i] = minimum;
- minimum = temp
- #将比较后得到的真正的最小值赋值给当前位置
- L[x] = minimum
-
堆的概念
堆:本质是一种数组对象。特别重要的一点性质:<b>任意的叶子节点小于(或大于)它所有的父节点</b>。对此,又分为大顶堆和小顶堆,大顶堆要求节点的元素都要大于其孩子,小顶堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求。
利用堆排序,就是基于大顶堆或者小顶堆的一种排序方法。下面,我们通过大顶堆来实现。
基本思想:
堆排序可以按照以下步骤来完成:
1. 首先将序列构建称为大顶堆;
(这样满足了大顶堆那条性质:位于根节点的元素一定是当前序列的最大值)
2. 取出当前大顶堆的根节点,将其与序列末尾元素进行交换;
(此时:序列末尾的元素为已排序的最大值;由于交换了元素,当前位于根节点的堆并不一定满足大顶堆的性质)
3. 对交换后的n-1个序列元素进行调整,使其满足大顶堆的性质;
4. 重复2.3步骤,直至堆中只有1个元素为止
- #-------------------------堆排序--------------------------------
- #**********获取左右叶子节点**********
- def LEFT(i):
- return 2*i + 1
- def RIGHT(i):
- return 2*i + 2
- #********** 调整大顶堆 **********
- #L:待调整序列 length: 序列长度 i:需要调整的结点
- def adjust_max_heap(L,length,i):
- #定义一个int值保存当前序列最大值的下标
- largest = i
- #执行循环操作:两个任务:1 寻找最大值的下标;2.最大值与父节点交换
- while (1):
- #获得序列左右叶子节点的下标
- left,right = LEFT(i),RIGHT(i)
- #当左叶子节点的下标小于序列长度 并且 左叶子节点的值大于父节点时,将左叶子节点的下标赋值给largest
- if (left < length) and (L[left] > L[i]):
- largest = left
- print('左叶子节点')
- else:
- largest = i
- #当右叶子节点的下标小于序列长度 并且 右叶子节点的值大于父节点时,将右叶子节点的下标值赋值给largest
- if (right < length) and (L[right] > L[largest]):
- largest = right
- print('右叶子节点')
- #如果largest不等于i 说明当前的父节点不是最大值,需要交换值
- if (largest != i):
- temp = L[i]
- L[i] = L[largest]
- L[largest] = temp
- i = largest
- print(largest)
- continue
- else:
- break
- #********** 建立大顶堆 **********
- def build_max_heap(L):
- length = len(L)
- for x in range((int)((length-1)/2),-1,-1):
- adjust_max_heap(L,length,x)
- #********** 堆排序 **********
- def heap_sort(L):
- #先建立大顶堆,保证最大值位于根节点;并且父节点的值大于叶子结点
- build_max_heap(L)
- #i:当前堆中序列的长度.初始化为序列的长度
- i = len(L)
- #执行循环:1. 每次取出堆顶元素置于序列的最后(len-1,len-2,len-3...)
- # 2. 调整堆,使其继续满足大顶堆的性质,注意实时修改堆中序列的长度
- while (i > 0):
- temp = L[i-1]
- L[i-1] = L[0]
- L[0] = temp
- #堆中序列长度减1
- i = i-1
- #调整大顶堆
- adjust_max_heap(L,i,0)
冒泡排序思路比较简单:
( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;)
(利用while循环可以减少执行次数)
- #冒泡排序
- def bubble_sort(L):
- length = len(L)
- #序列长度为length,需要执行length-1轮交换
- for x in range(1,length):
- #对于每一轮交换,都将序列当中的左右元素进行比较
- #每轮交换当中,由于序列最后的元素一定是最大的,因此每轮循环到序列未排序的位置即可
- for i in range(0,length-x):
- if L[i] > L[i+1]:
- temp = L[i]
- L[i] = L[i+1]
- L[i+1] = temp
快速排序的基本思想:挖坑填数+分治法
1、从序列当中选择一个基准数(pivot)
在这里我们选择序列当中第一个数最为基准数
2、将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧
3、重复步骤1.2,直到所有子集当中只有一个元素为止。
用伪代码描述如下:
① i =L; j = R; 将基准数挖出形成第一个坑a[i]。
② j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
③ i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
④ 再重复执行2,3二步,直到i==j,将基准数填入a[i]中
- #快速排序
- #L:待排序的序列;start排序的开始index,end序列末尾的index
- #对于长度为length的序列:start = 0;end = length-1
- def quick_sort(L,start,end):
- if start < end:
- i , j , pivot = start , end , L[start]
- while i < j:
- #从右开始向左寻找第一个小于pivot的值
- while (i < j) and (L[j] >= pivot):
- j = j-1
- #将小于pivot的值移到左边
- if (i < j):
- L[i] = L[j]
- i = i+1
- #从左开始向右寻找第一个大于pivot的值
- while (i < j) and (L[i] < pivot):
- i = i+1
- #将大于pivot的值移到右边
- if (i < j):
- L[j] = L[i]
- j = j-1
- #循环结束后,说明 i=j,此时左边的值全都小于pivot,右边的值全都大于pivot
- #pivot的位置移动正确,那么此时只需对左右两侧的序列调用此函数进一步排序即可
- #递归调用函数:依次对左侧序列:从0 ~ i-1//右侧序列:从i+1 ~ end
- L[i] = pivot
- #左侧序列继续排序
- quick_sort(L,start,i-1)
- #右侧序列继续排序
- quick_sort(L,i+1,end)
因此,归并排序实际上就是两个操作,拆分+合并
在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。
L[first...mid]为第一段,L[mid+1...last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first...last]并且也有序。归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个典型的应用。
它的基本操作是:
将已有的子序列合并,达到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
归并排序其实要做两件事:
- # 归并排序
- #这是合并的函数
- # 将序列L[first...mid]与序列L[mid+1...last]进行合并
- def mergearray(L,first,mid,last,temp):
- #对i,j,k分别进行赋值
- i,j,k = first,mid+1,0
- #当左右两边都有数时进行比较,取较小的数
- while (i <= mid) and (j <= last):
- if L[i] <= L[j]:
- temp[k] = L[i]
- i = i+1
- k = k+1
- else:
- temp[k] = L[j]
- j = j+1
- k = k+1
- #如果左边序列还有数
- while (i <= mid):
- temp[k] = L[i]
- i = i+1
- k = k+1
- #如果右边序列还有数
- while (j <= last):
- temp[k] = L[j]
- j = j+1
- k = k+1
- #将temp当中该段有序元素赋值给L待排序列使之部分有序
- for x in range(0,k):
- L[first+x] = temp[x]
- # 这是分组的函数
- def merge_sort(L,first,last,temp):
- if first < last:
- mid = (int)((first + last) / 2)
- #使左边序列有序
- merge_sort(L,first,mid,temp)
- #使右边序列有序
- merge_sort(L,mid+1,last,temp)
- #将两个有序序列合并
- mergearray(L,first,mid,last,temp)
- # 归并排序的函数
- def merge_sort_array(L):
- #声明一个长度为len(L)的空列表
- temp = len(L)*[None]
- #调用归并排序
- merge_sort(L,0,len(L)-1,temp)
基数排序.gif
基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序。
分配:我们将L[i]中的元素取出,首先确定其个位上的数字,根据该数字分配到与之序号相同的桶中
收集:当序列中所有的元素都分配到对应的桶中,再按照顺序依次将桶中的元素收集形成新的一个待排序列L[ ]
对新形成的序列L[]重复执行分配和收集元素中的十位、百位...直到分配完该序列中的最高位,则排序结束
根据上述“基数排序”的展示,我们可以清楚的看到整个实现的过程
-
- #************************基数排序****************************
- #确定排序的次数
- #排序的顺序跟序列中最大数的位数相关
- def radix_sort_nums(L):
- maxNum = L[0]
- #寻找序列中的最大数
- for x in L:
- if maxNum < x:
- maxNum = x
- #确定序列中的最大元素的位数
- times = 0
- while (maxNum > 0):
- maxNum = (int)(maxNum/10)
- times = times+1
- return times
- #找到num从低到高第pos位的数据
- def get_num_pos(num,pos):
- return ((int)(num/(10**(pos-1))))%10
- #基数排序
- def radix_sort(L):
- count = 10*[None] #存放各个桶的数据统计个数
- bucket = len(L)*[None] #暂时存放排序结果
- #从低位到高位依次执行循环
- for pos in range(1,radix_sort_nums(L)+1):
- #置空各个桶的数据统计
- for x in range(0,10):
- count[x] = 0
- #统计当前该位(个位,十位,百位....)的元素数目
- for x in range(0,len(L)):
- #统计各个桶将要装进去的元素个数
- j = get_num_pos(int(L[x]),pos)
- count[j] = count[j]+1
- #count[i]表示第i个桶的右边界索引
- for x in range(1,10):
- count[x] = count[x] + count[x-1]
- #将数据依次装入桶中
- for x in range(len(L)-1,-1,-1):
- #求出元素第K位的数字
- j = get_num_pos(L[x],pos)
- #放入对应的桶中,count[j]-1是第j个桶的右边界索引
- bucket[count[j]-1] = L[x]
- #对应桶的装入数据索引-1
- count[j] = count[j]-1
- # 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表
- for x in range(0,len(L)):
- L[x] = bucket[x]
1w个数据时:
直接插入排序:11.615608
希尔排序:13.012008
简单选择排序:3.645136000000001
堆排序:0.09587900000000005
冒泡排序:6.687218999999999
#****************************************************
快速排序:9.999999974752427e-07
#快速排序有误:实际上并未执行
#RecursionError: maximum recursion depth exceeded in comparison
#****************************************************
归并排序:0.05638299999999674
基数排序:0.08150400000000246
10w个数据时:
直接插入排序:1233.581131
希尔排序:1409.8012320000003
简单选择排序:466.66974500000015
堆排序:1.2036720000000969
冒泡排序:751.274449
#****************************************************
快速排序:1.0000003385357559e-06
#快速排序有误:实际上并未执行
#RecursionError: maximum recursion depth exceeded in comparison
#****************************************************
归并排序:0.8262230000000272
基数排序:1.1162899999999354
从运行结果上来看,堆排序、归并排序、基数排序真的快。
对于快速排序迭代深度超过的问题,可以将考虑将快排通过非递归的方式进行实现。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。