赞
踩
数据集主页:Go
背景
近年来,智能和自动驾驶车辆的快速发展对驾乘舒适性也提出了更高的要求。路面作为车辆与物理世界有接触的唯一媒介,对车辆行驶性能有决定性影响。提前感知路面状态,尤其是重建路面几何轮廓信息,能为后续决策规划和动力学控制系统提供关键参考信息。基于此实际背景,我们构建并发布了该路面重建数据集(Road Surface Reconstruction Dataset, RSRD)。这是首个专门面向自动驾驶路面感知的高精度、多模态和大规模数据集,可作为诸多计算机视觉和自动驾驶应用的测试基准。
此外,我们于2022年发布了首个大规模路面分类数据集RSCD,含有100万张精确标注的路面图像。此数据集与之结合, 能够提供更加准确、全面的路面状态信息,赋能高阶自动驾驶。
数据采集
我们搭建了实车数据采集系统,包含IMU、双目摄像头、激光雷达和RTK高精定位单元。不同于现有自动驾驶感知数据集,我们专注于路面区域并保留细致的路面纹理信息。我们在城市和乡村区域开展实验,覆盖众多水泥和沥青路面工况,并包含常见路面不平如凹坑、裂缝和减速带。激光雷达点云经过运动补偿和多帧融合处理,为深度学习模型提供高精度、密集的真实标签。更多细节请参考数据集网页。
数据集内容
我们提供约2800对含有密集点云标签,和13000对有稀疏标签的样本。具体包含以下数据:
此外,我们提供半分辨率(960*540)的版本,研究人员可根据条件和需求选择。
数据集性能
上图左侧为点云标签数量的统计直方图。大部分图像有8万~10万个真值标签,对于960*540大小的图像,GT比例在17%左右。右图统计了路面纵向方向上,每40cm间隔内点云扫描线的平均数量。在9米的预瞄距离内,能保证每20cm有一条雷达扫描。路面区域点云密度显著高于现有数据集,为高精度、高可靠的路面感知提供坚实基础。
应用和基准
该数据集面向路面重建应用,同时作为诸多下游任务的测试基准,例如:
作为基线,我们开源了基于立体匹配和BEV进行路面重建的代码,更多细节请参考数据集网页。下图为重建的可视化效果:
数据集论文
T. Zhao, C.F. Xu, M.Y. Ding, el.al. RSRD: A road surface reconstruction dataset and benchmark for safe and comfortable autonomous driving. arXiv:2310.02262。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。