当前位置:   article > 正文

ACGAN与CGAN的区别_cgan和acgan

cgan和acgan

ACGAN与CGAN的区别如下


1 与CGAN一样的是,在生成网络的输入都混入label;
2 不一样的是在鉴别网络输入时,ACGAN不再混入label,而是在鉴别网络的输出时,把label作为target进行反馈来提交给鉴别网络的学习能力。
3 另一个不一样的是,生成网络和鉴别网络的网络层不再是CGAN的全连接,而是ACGAN的深层卷积网络(这是在DCGAN开始引入的改变),卷积能够更好的提取图片的特征值,所有ACGAN生成的图片边缘更具有连续性,感觉更真实。


如下生成网络model,和CGAN的一模一样。

        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))
 
        model_input = multiply([noise, label_embedding])
        img = model(model_input)

如下鉴别网络model,传入还是img,但是输出包含两个部分:
1 validity,即鉴别图片是不是伪造的结果。
2 label,使用softmax激活,输出10维的结果即属于哪个数字。

        img = Input(shape=self.img_shape)
 
        # Extract feature representation
        features = model(img)
 
        # Determine validity and label of the image
        validity = Dense(1, activation="sigmoid")(features)
        label = Dense(self.num_classes, activation="softmax")(features)
 
        return Model(img, [validity, label])

所以在鉴别网络或生成网络训练的时候,提供了target img_labels和sampled_labels。

            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, sampled_labels])
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
            # ---------------------
            #  Train Generator
            # ---------------------
 
            # Train the generator
            g_loss = self.combined.train_on_batch([noise, sampled_labels], [valid, sampled_labels])
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/506517
推荐阅读
相关标签
  

闽ICP备14008679号