当前位置:   article > 正文

P1025 [NOIP2001 提高组] 数的划分———C++(动态规划、DFS)_c++数的划分

c++数的划分

[NOIP2001 提高组] 数的划分

题目描述

将整数 n n n 分成 k k k 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。

例如: n = 7 n=7 n=7 k = 3 k=3 k=3,下面三种分法被认为是相同的。

1 , 1 , 5 1,1,5 1,1,5;
1 , 5 , 1 1,5,1 1,5,1;
5 , 1 , 1 5,1,1 5,1,1.

问有多少种不同的分法。

输入格式

n , k n,k n,k 6 < n ≤ 200 6<n \le 200 6<n200 2 ≤ k ≤ 6 2 \le k \le 6 2k6

输出格式

1 1 1 个整数,即不同的分法。

样例 #1

样例输入 #1

7 3
  • 1

样例输出 #1

4
  • 1

提示

四种分法为:
1 , 1 , 5 1,1,5 1,1,5;
1 , 2 , 4 1,2,4 1,2,4;
1 , 3 , 3 1,3,3 1,3,3;
2 , 2 , 3 2,2,3 2,2,3.

【题目来源】

NOIP 2001 提高组第二题

动态规划的解题思路

  • 动态规划,相当于把n个小球放到k个箱子里面,问有几种分法。
  • dp[i][j]相当于把第i个小球放到第j个箱子里。
  • 状态初始化:dp[i][1] = 1
  • 状态转移方程:dp[i][j] = dp[i - 1][j - 1] + dp[i - j][j]

Code

#include<iostream>

using namespace std;

int n, k;
int dp[210][10];

int main() {
	cin >> n >> k;
	for (int i = 0; i <= n; i++) {
		dp[i][1] = 1; // 状态初始化
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 2; j <= k; j++) {
			if (i >= j) {
				dp[i][j] = dp[i - 1][j - 1] + dp[i - j][j];
			}
		}
	}
	cout << dp[n][k] << endl;
	return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

运行结果

DFS

Code

#include<iostream>

using namespace std;

int ans;

void dfs(int m, int k, int n) {
	if (k == 1) {
		ans++;
		return;
	}
	for (int i = m; i <= n / k; i++) {
		dfs(i, k - 1, n - i);
	}
}


int main() {
	int n, k;
	cin >> n >> k;
	dfs(1, k, n);
	cout << ans;
	return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

运行结果

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/933419
推荐阅读
相关标签
  

闽ICP备14008679号