赞
踩
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算某个顶点到其他所有顶点的最短路径。Dijkstra(迪杰斯特拉)算法要求图中不存在负权边,即保证图中每条边的权重值为正。算法的基本思想是:从源点出发,每次选择离源点最近的一个顶点前进,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。
优点:效率较高,时间复杂度为O(n^2)。
缺点:只能求一个顶点到所有顶点的最短路径。 (单源最短路)
1、先选定一个根结点,并选定一个数组,先确定未遍历前的初始距离,把距离最短的邻接结点选定为中间结点,并标记访问过,开始往下遍历,挨个访问那个中间结点的邻接结点。计算出根结点到中间结点+中间结点到新邻接结点的距离,作为新距离,对比新距离和旧距离,如果新距离大,则把新距离替换掉旧距离,否则不变。
2、一轮访问结束后,从未标记的结点中选定距离最短的,把它作为中间结点,继续往下访问。若都标记过,则算法结束。
简单来说,就是求局部最优解,从而影响整体
它的主要特点是:以起始点为中心向外层层扩展(广度优先搜索思想), 直到扩展到终点。
1.【第一章】《线性表与顺序表》
2.【第一章】《单链表》
3.【第一章】《单链表的介绍》
4.【第一章】《单链表的基本操作》
5.【第一章】《单链表循环》
6.【第一章】《双链表》
7.【第一章】《双链表循环》
8.【第二章】《栈》
9.【第二章】《队》
10.【第二章】《字符串暴力匹配》
11.【第二章】《字符串kmp匹配》
12.【第三章】《树的基础概念》
13.【第三章】《二叉树的存储结构》
14.【第三章】《二叉树链式结构及实现1》
15.【第三章】《二叉树链式结构及实现2》
16.【第三章】《二叉树链式结构及实现3》
17.【第三章】《二叉树链式结构及实现4》
18.【第三章】《二叉树链式结构及实现5》
19.【第三章】《中序线索二叉树理论部分》
20.【第三章】《中序线索二叉树代码初始化及创树》
21.【第三章】《中序线索二叉树线索化及总代码》
22【第三章】《先序线索二叉树理论及线索化》
23【第三章】《先序线索二叉树查找及总代码》
24【第三章】《后续线索二叉树线索化理论》
25【第三章】《后续线索二叉树总代码部分》
26【第三章】《二叉排序树基础了解》
27【第三章】《二叉排序树代码部分》
28【第三章】《二叉排序树代码部分》
29【第三章】《平衡二叉树基础概念》
30【第三章】《平衡二叉树的平衡因子》
31【第三章】《平衡二叉树的旋转基础详解》
32【第三章】《平衡二叉树的旋转类型图文详解》
33【第三章】《平衡二叉树的旋转类型总结及总代码》
34【第三章】《哈夫曼树简单了解》
35【第三章】《哈夫曼树的构造方法》
36【第三章】《哈夫曼编码构造及代码》
37【第四章】《图的定义》
38【第四章】《图的基本概念和术语》
39【第四章】《图的存储结构》
40【第四章】《图的遍历之深度优先遍历》
41【第四章】《广度优先遍历BFS》
42【第四章】《图的遍历总代码》
43【第四章】《最小生成树概念》
44【第四章】《最小生成树的应用举例》
45【第四章】《prim算法(普里姆算法)详解》
46【第四章】《prim算法(普里姆算法)详解2》
47【第四章】《prim算法(普里姆算法)详解3》
48【第四章】《prim算法(普里姆算法)讲解汇总》
49【第四章】《prim算法(普里姆算法)代码讲解》
50【第四章】《prim算法(普里姆算法)总代码》
51【第四章】《克鲁斯卡尔算法思路介绍》
52【第四章】《克鲁斯卡尔算法步骤思路1》
53【第四章】《克鲁斯卡尔算法步骤思路2》
54【第四章】《克鲁斯卡尔算法应用场景-公交站问题》
55【第四章】《克鲁斯卡尔算法判断回路问题》
56【第四章】《克鲁斯卡尔算法步骤回顾》
57【第四章】《克鲁斯卡尔算法代码初始化详解》
58【第四章】《克鲁斯卡尔算法总代码详解》
59【第四章】《了解最短路径》
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。