当前位置:   article > 正文

(三十二 :2021.01.12)MICCAI 2017 追踪之论文纲要_miccai2017

miccai2017

讲在前面

PART IPART IIPART III

论文目录

PART I

Atlas and Surface-Based Techniques(地图集和基于表面的技术) 概要
1.The Active Atlas: Combining 3D Anatomical Models with Texture Detectors
有效地图集:将3D解剖模型与纹理探测器相结合
2.Exploring Gyral Patterns of Infant Cortical Folding Based on Multi-view Curvature Information
基于多视图曲率信息探索婴幼儿皮质折叠的古尔模式
3.Holistic Mapping of Striatum Surfaces in the Laplace-Beltrami Embedding Space
Laplace-Beltrami嵌入空间的纹状体表面的整体映射
4.Novel Local Shape-Adaptive Gyrification Index with Application to Brain Development
新颖的局部形状适应性热化指数,应用于脑发展
5.Joint Sparse and Low-Rank Regularized Multi-Task Multi-Linear Regression for Prediction of Infant Brain Development with Incomplete Data
联合稀疏和低级正则化多任务多线性回归,以预先完成数据预测婴儿大脑发展
6.Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases
纵向扩散加权婴幼儿地图空间的图形约束稀疏构造
7.4D Infant Cortical Surface Atlas Construction Using Spherical Patch-Based Sparse Representation
4D婴幼儿皮质表面地图集结构使用球形贴片的稀疏表示
8.Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface
基于婴幼儿皮质表面的个性化局部的发育模式
9.Longitudinal Modeling of Multi-modal Image Contrast Reveals Patterns of Early Brain Growth
多模态图像对比度的纵向建模揭示了早期脑增长的模式
10.Prediction of Brain Network Age and Factors of Delayed Maturation in Very Preterm Infants
预测脑网络年龄及延迟成熟因素在非常早产儿
11.Falx Cerebri Segmentation via Multi-atlas Boundary Fusion
通过多地图集边界融合的Falx脑脑分割
12.A 3D Femoral Head Coverage Metric for Enhanced Reliability in Diagnosing Hip Dysplasia
用于诊断髋关节发育性的增强可靠性的3D股骨头覆盖度量
13.Learning-Based Multi-atlas Segmentation of the Lungs and Lobes in Proton MR Images
基于学习的肺和叶片的多atlas分段在质子MR图像中
14.Unsupervised Discovery of Spatially-Informed Lung Texture Patterns for Pulmonary Emphysema: The MESA COPD Study
肺肺部空间通知肺部纹理模式的无监督发现:MESA COPD研究
Shape and Patch-Based Techniques(基于形状和补丁的技术) 概要
15.Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet
使用Boostnet的青少年特发性脊柱侧凸评估的自动标志性估算
16.Nonlinear Statistical Shape Modeling for Ankle Bone Segmentation Using a Novel Kernelized Robust PCA
使用新型核化鲁棒PCA的踝骨分割非线性统计形状模型
17.Adaptable Landmark Localisation: Applying Model Transfer Learning to a Shape Model Matching System
适应性地标定位:将模型转移学习应用于形状模型匹配系统
18.Representative Patch-based Active Appearance Models Generated from Small Training Populations
基于代表的基于补丁的主动外观模型,产生的小型训练群体
19.Integrating Statistical Prior Knowledge into Convolutional Neural Networks
将统计事先知识集成到卷积神经网络中
20.Statistical Shape Model of Nested Structures Based on the Level Set
基于水平集的嵌套结构统计形状模型
21.Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans
局部自适应概率模型,用于病态OCT扫描的全球分割
22.Learning Deep Features for Automated Placement of Correspondence Points on Ensembles of Complex Shapes
学习复杂形状集合的对应点的自动放置深度特征
23.Robust Multi-scale Anatomical Landmark Detection in Incomplete 3D-CT Data
不完整3D-CT数据中的鲁棒多尺度解剖标记检测
24.Learning and Incorporating Shape Models for Semantic Segmentation
学习和掺入语义分割的形状模型
25.Surface-Wise Texture Patch Analysis of Combined MRI and PET to Detect MRI-Negative Focal Cortical Dysplasia
HORY MRI和PET检测MRI阴性焦平皮质发育不良的表面明智的纹理贴剂分析
Registration Techniques(配准技术) 概要
26.Training CNNs for Image Registration from Few Samples with Model-based Data Augmentation
培训CNNS用于图像注册的图像注册,具有基于模型的数据增强
27.Nonrigid Image Registration Using Multi-scale 3D Convolutional Neural Networks
使用多刻度3D卷积神经网络的非防火图像注册
28.Multimodal Image Registration with Deep Context Reinforcement Learning
具有深层上下文增强学习的多式图像登记
29.Directional Averages for Motion Segmentation in Discontinuity Preserving Image Registration
不连续保留图像配准中的运动分段的方向平均值
30.ℓ2 Similarity Metrics for Diffusion Multi-Compartment Model Images Registration
ℓ2扩散的相似度量多隔室模型图像注册
31.SVF-Net: Learning Deformable Image Registration Using Shape Matching
SVF-Net:使用形状匹配学习可变形图像配准
32.A Large Deformation Diffeomorphic Approach to Registration of CLARITY Images via Mutual Information
通过相互信息,对清晰度图像注册的大变形扩散方法
33.Mixed Metric Random Forest for Dense Correspondence of Cone-Beam Computed Tomography Images
混合度量随机森林,用于锥形光束计算机断层扫描图像的密集对应
34.Optimal Transport for Diffeomorphic Registration
扩散配准的最佳运输
35.Deformable Image Registration Based on Similarity-Steered CNN Regression
基于相似性 - 转向的CNN回归的可变形图像配准
36.Generalised Coherent Point Drift for Group-Wise Registration of Multi-dimensional Point Sets
多维点集合登记的广义相干点漂移
37.Fast Geodesic Regression for Population-Based Image Analysis
基于人口的图像分析的快速测量回归
38.Deformable Registration of a Preoperative 3D Liver Volume to a Laparoscopy Image Using Contour and Shading Cues
使用轮廓和阴影线索将术前3D肝体积的可变形的3D肝脏体积的登记到腹腔镜图像
39.Parameter Sensitivity Analysis in Medical Image Registration Algorithms Using Polynomial Chaos Expansions
使用多项式混沌扩建的医学图像配准算法参数灵敏度分析
40.Robust Non-rigid Registration Through Agent-Based Action Learning
通过基于代理的动作学习的强大的非刚性注册
41.Selecting the Optimal Sequence for Deformable Registration of Microscopy Image Sequences Using Two-Stage MST-based Clustering Algorithm
选择使用基于两级MST基聚类算法的显微镜图像序列的可变形登记的最佳序列
Functional Imaging, Connectivity, and Brain Parcellation(功能成像,连接性和脑细胞分裂) 概要
42.Dynamic Regression for Partial Correlation and Causality Analysis of Functional Brain Networks
功能性大脑网络部分相关性和因果关系分析的动态回归
43.Kernel-Regularized ICA for Computing Functional Topography from Resting-State fMRI
内核正则化ICA用于计算Resting-State FMRI的功能性地形
44.N-way Decomposition: Towards Linking Concurrent EEG and fMRI Analysis During Natural Stimulus
N-Lade分解:在天然刺激期间连接并发脑电图和FMRI分析
45.Connectome-Based Pattern Learning Predicts Histology and Surgical Outcome of Epileptogenic Malformations of Cortical Development
基于连接的模式学习预测皮质发育的癫痫畸形的组织学和外科蛋白质
46.Joint Representation of Connectome-Scale Structural and Functional Profiles for Identification of Consistent Cortical Landmarks in Human Brains
结合尺度结构和功能型材的联合表示,用于识别人体大脑中一致的皮质地标
47.Subject-Specific Structural Parcellations Based on Randomized AB-divergences
基于随机AB分歧的主题特异性结构局
48.Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors
使用全脑功能相关张量改善功能性MRI注册
49.Multi-way Regression Reveals Backbone of Macaque Structural Brain Connectivity in Longitudinal Datasets
多元回归揭示纵向数据集中猕猴结构脑连接的骨干
50.Multimodal Hyper-connectivity Networks for MCI Classification
用于MCI分类的多式联卡超连接网络<
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/570885?site
推荐阅读
相关标签
  

闽ICP备14008679号