赞
踩
Problem: 72. 编辑距离
由于易得将字符串word1向word2转换和word2向word1转换是等效的,则我们假定统一为word1向word2转换!!!
1.确定状态:我们假设现在有下标i,j分别指向字符串word1和word2尾部的字符,dp(i,j)表示当前的操作则:
1.1. dp(i- 1, j) + 1;表示删除,直接把word1[i]的这个字符删除掉,并前移i,继续跟j对比,同时操作数加一;
1.2. dp(i, j - 1) + 1;表示插入,直接把word1[1]处的这个字符插入到word2[j]处,并前移动j,继续和i对比;同时操作数加一;
1.3. dp(i - 1, j - 1) + 1;表示替换,将word1[i]替换为word2[j],同时往前移动i,j继续对比,同时操作数加一
2.确定状态转移方程:由于上述易得dp[i][j] = min(dp[i - 1][j] + 1;dp[i][j - 1] + 1;dp[i - 1][j - 1] + 1);
时间复杂度:
O ( m × n ) O(m\times n) O(m×n)
空间复杂度:
O ( m × n ) O(m\times n) O(m×n)
class Solution { public: /** * Dynamic programming * * @param word1 Given string1 * @param word2 Given string2 * @return int */ int minDistance(string word1, string word2) { int word1Len = word1.length(); int word2Len = word2.length(); vector<vector<int>> dp(word1Len + 1, vector<int>(word2Len + 1)); for (int i = 1; i <= word1Len; ++i) { dp[i][0] = i; } for (int j = 1; j <= word2Len; ++j) { dp[0][j] = j; } for (int i = 1; i <= word1Len; ++i) { for (int j = 1; j <= word2Len; ++j) { if (word1.at(i - 1) == word2.at(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = min3(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1); } } } return dp[word1Len][word2Len]; } /** * Find the maximum of the three numbers * * @param a Given number * @param b Given number * @param c Given number * @return int */ int min3(int a, int b, int c) { return min(a, min(b, c)); } };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。