赞
踩
“强基固本,行稳致远”,科学研究离不开理论基础,人工智能学科更是需要数学、物理、神经科学等基础学科提供有力支撑,为了紧扣时代脉搏,我们推出“强基固本”专栏,讲解AI领域的基础知识,为你的科研学习提供助力,夯实理论基础,提升原始创新能力,敬请关注。
作者: 初识CV地址:https://www.zhihu.com/people/AI_team-WSF
本文大部分内容来自:脉冲神经网络的五脏六腑,做一下笔记对原始文章增添一下自己的理解。
https://blog.csdn.net/u011853479/article/details/61414913
第一代神经网络:感知机,第二代神经网络:ANN,第三代神经网络:脉冲神经网络。由于DCNN采用基于速率的编码,所以其硬件实现需要消耗更多的‘能量’。SNN中每个神经元最多使用一个脉冲,而大多数神经元根本不放电,导致能量消耗最小。
https://zhuanlan.zhihu.com/p/159982953
SNN的构建过程
https://blog.csdn.net/h__ang/article/details/90609793
01
构建脉冲神经元模型
传统的人工神经元模型主要包含两个功能,一是对前一层神经元传递的信号计算加权和,二是采用一个非线性激活函数输出信号。 前者用于模仿生物神经元之间传递信息的方式,后者用来提高神经网络的非线性计算能力。相比于人工神经元,脉冲神经元则从神经科学的角度出发,对真实的生物神经元进行建模。 SNN所构成的深度网络是一种高效节能的神经网络,每幅图像只有几个峰值作为特征,这使得它适合于神经形态硬件的实现。(虽然现在SDNN只能在小的数据集上面进行测试,而且识别精度不如DCNN,但是相信不久的将来SDNN会是一个发展很好的方向)。https://blog.csdn.net/qq_34886403/article/details/75735448
1.3 Izhikevich模型 HH模型精确度高,但运算量大。LIF模型运算量小,但牺牲了精确度。Izhikevich模型结合了两者的优势,生物精确性接近HH模型,运算复杂度接近LIF模型。02
神经脉冲序列
03
脉冲神经网络的训练方法
04
ANN向SNN的转化
由于脉冲神经网络的训练算法不太成熟,一些研究者提出将传统的人工神经网络转化为脉冲神经网络,利用较为成熟的人工神经网络训练算法来训练基于人工神经网络的深度神经网络,然后通过触发频率编码将其转化为脉冲神经网络,从而避免了直接训练脉冲神经网络的困难。[1] Gerstner W, Kistler W M. Spiking neuron models: Single neurons, populations, plasticity[M]. Cambridge university press, 2002.
[2] Izhikevich E M. Simple model of spiking neurons[J]. IEEE Transactions on neural networks, 2003, 14(6): 1569-1572.
[3] Izhikevich E M. Hybrid spiking models[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368(1930): 5061-5070.
[4] Heeger D. Poisson model of spike generation[J]. Handout, University of Standford, 2000, 5: 1-13.
[5] Hebb D O. The organization of behavior: A neuropsychological theory[M]. Psychology Press, 2005.
[6] Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule[J]. Annu. Rev. Neurosci., 2008, 31: 25-46.
[7] Ponulak F, Kasinski A. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting[J]. Neural Computation, 2010, 22(2): 467-510.
[8] Wade J J, McDaid L J, Santos J A, et al. SWAT: a spiking neural network training algorithm for classification problems[J]. IEEE Transactions on neural networks, 2010, 21(11): 1817-1830.
[9] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Cognitive modeling, 1988, 5(3): 1.
[10] Bohte S M, Kok J N, La Poutre H. Error-backpropagation in temporally encoded networks of spiking neurons[J]. Neurocomputing, 2002, 48(1): 17-37.
[11] Ghosh-Dastidar S, Adeli H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection[J]. Neural networks, 2009, 22(10): 1419-1431.
[12] Mohemmed A, Schliebs S, Matsuda S, et al. Span: Spike pattern association neuron for learning spatio-temporal spike patterns[J]. International Journal of Neural Systems, 2012, 22(04): 1250012.
[13] Mohemmed A, Schliebs S, Matsuda S, et al. Training spiking neural networks to associate spatio-temporal input–output spike patterns[J]. Neurocomputing, 2013, 107: 3-10.
[14] Yu Q, Tang H, Tan K C, et al. Precise-spike-driven synaptic plasticity: Learning hetero-association of spatiotemporal spike patterns[J]. Plos one, 2013, 8(11): e78318.
[15] Cao Y, Chen Y, Khosla D. Spiking deep convolutional neural networks for energy-efficient object recognition[J]. International Journal of Computer Vision, 2015, 113(1): 54-66.
[16] Diehl P U, Neil D, Binas J, et al. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing[C]//2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015: 1-8.
[17] O’Connor P, Neil D, Liu S C, et al. Real-time classification and sensor fusion with a spiking deep belief network[J]. Neuromorphic Engineering Systems and Applications, 2015: 61.
[18] Maass W, Natschläger T, Markram H. Real-time computing without stable states: A new framework for neural computation based on perturbations[J]. Neural computation, 2002, 14(11): 2531-2560.
[19] LIN X, WANG X, ZHANG N, et al. Supervised Learning Algorithms for Spiking Neural Networks: A Review[J]. Acta Electronica Sinica, 2015, 3: 024.
[20] 顾宗华, 潘纲. 神经拟态的类脑计算研究[J]. 中国计算机学会通讯, 2015, 11(10): 10-20.
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
直播预告
“强基固本”历史文章
分享、点赞、在看,给个三连击呗!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。