赞
踩
常用的工业6轴机械臂采用6轴串联结构,虽然其运动学正解比较容易,但是其运动学逆解非常复杂,其逆解的方程组高度非线性,且难以化简。
由于计算机技术的发展,依靠其强大的算力,可以通过数值解的方式对机械臂的运动学逆解方程组进行求解。以下将使用牛顿法详解整个求解过程。
机械臂运动学正解方程组如式1所示。
[
f
11
f
12
f
13
f
14
f
21
f
22
f
23
f
24
f
31
f
32
f
33
f
34
0
0
0
1
]
=
f
(
θ
1
,
θ
2
,
θ
3
,
θ
4
,
θ
5
,
θ
6
)
(1)
对于运动学正解,式1右边是已知量,对于运动学逆解,式1左边式已知量。采用牛顿法求解运动学逆解,已知机械臂末端姿态为
[
r
11
r
12
r
13
r
14
r
21
r
22
r
23
r
24
r
31
r
32
r
33
r
34
0
0
0
1
]
F
(
θ
1
,
θ
2
,
θ
3
,
θ
4
,
θ
5
,
θ
6
)
=
(
f
14
−
r
14
)
2
+
(
f
24
−
r
24
)
2
+
(
f
34
−
r
34
)
2
+
0.08
∗
(
f
11
−
r
11
)
2
+
0.08
∗
(
f
12
−
r
12
)
2
+
0.08
∗
(
f
13
−
r
13
)
2
+
0.08
∗
(
f
31
−
r
31
)
2
+
0.08
∗
(
f
32
−
r
32
)
2
+
0.08
∗
(
f
34
−
r
34
)
2
(2)
F(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) =(f_{14}-r_{14})^2+(f_{24}-r_{24})^2+(f_{34}-r_{34})^2+0.08*(f_{11}-r_{11})^2+0.08*(f_{12}-r_{12})^2+0.08*(f_{13}-r_{13})^2+0.08*(f_{31}-r_{31})^2+0.08*(f_{32}-r_{32})^2+0.08*(f_{34}-r_{34})^2 \tag2
F(θ1,θ2,θ3,θ4,θ5,θ6)=(f14−r14)2+(f24−r24)2+(f34−r34)2+0.08∗(f11−r11)2+0.08∗(f12−r12)2+0.08∗(f13−r13)2+0.08∗(f31−r31)2+0.08∗(f32−r32)2+0.08∗(f34−r34)2(2)
目标函数的雅可比矩阵为
J
=
[
∂
F
∂
θ
1
,
∂
F
∂
θ
2
,
∂
F
∂
θ
3
,
∂
F
∂
θ
4
,
∂
F
∂
θ
5
,
∂
F
∂
θ
6
]
J= [\frac{\partial F}{\partial\theta_1}, \frac{\partial F}{\partial\theta_2},\frac{\partial F}{\partial\theta_3},\frac{\partial F}{\partial\theta_4},\frac{\partial F}{\partial\theta_5},\frac{\partial F}{\partial\theta_6}]
J=[∂θ1∂F,∂θ2∂F,∂θ3∂F,∂θ4∂F,∂θ5∂F,∂θ6∂F]
目标函数的雅克比矩阵为
H
=
[
∂
2
F
∂
θ
1
2
∂
2
F
∂
θ
1
∂
θ
2
∂
2
F
∂
θ
1
∂
θ
3
∂
2
F
∂
θ
1
∂
θ
4
∂
2
F
∂
θ
1
∂
θ
5
∂
2
F
∂
θ
1
∂
θ
6
∂
2
F
∂
θ
2
∂
θ
1
∂
2
F
∂
θ
2
2
∂
2
F
∂
θ
2
∂
θ
3
∂
2
F
∂
θ
2
∂
θ
4
∂
2
F
∂
θ
2
∂
θ
5
∂
2
F
∂
θ
2
∂
θ
6
∂
2
F
∂
θ
3
∂
θ
1
∂
2
F
∂
θ
3
∂
θ
2
∂
2
F
∂
θ
3
2
∂
2
F
∂
θ
3
∂
θ
4
∂
2
F
∂
θ
3
∂
θ
5
∂
2
F
∂
θ
3
∂
θ
6
∂
2
F
∂
θ
4
∂
θ
1
∂
2
F
∂
θ
4
∂
θ
2
∂
2
F
∂
θ
4
∂
θ
3
∂
2
F
∂
θ
4
2
∂
2
F
∂
θ
4
∂
θ
5
∂
2
F
∂
θ
4
∂
θ
6
∂
2
F
∂
θ
5
∂
θ
1
∂
2
F
∂
θ
5
∂
θ
2
∂
2
F
∂
θ
5
∂
θ
3
∂
2
F
∂
θ
5
∂
θ
4
∂
2
F
∂
θ
5
2
∂
2
F
∂
θ
5
∂
θ
6
∂
2
F
∂
θ
6
∂
θ
1
∂
2
F
∂
θ
6
∂
θ
2
∂
2
F
∂
θ
6
∂
θ
3
∂
2
F
∂
θ
6
∂
θ
4
∂
2
F
∂
θ
6
∂
θ
5
∂
2
F
∂
θ
6
2
]
H=
迭代步长 Δ Θ = − H ∗ J T \Delta \Theta = -H*J^T ΔΘ=−H∗JT
clear; clc; rng(1); %固定随机数种子 %构造运动学模型 syms a0 a1 a2 a3 a4 a5; FK = FKinematics(a0, a1, a2, a3, a4, a5); %构造目标函数 syms T14 T24 T34 T11 T12 T13 T31 T32 T33; opt_F(a0, a1, a2, a3, a4, a5, T14, T24, T34, T11, T12, T13, T31, T32, T33) = (FK(1, 4) - T14)^2 + ... (FK(2, 4) - T24)^2 + ... (FK(3, 4) - T34)^2 + ... 0.08 * (FK(1, 1) - T11)^2 + ... 0.08 * (FK(1, 2) - T12)^2 + ... 0.08 * (FK(1, 3) - T13)^2 + ... 0.08 * (FK(3, 1) - T31)^2 + ... 0.08 * (FK(3, 2) - T32)^2 + ... 0.08 * (FK(3, 3) - T33)^2 opt_F = matlabFunction(opt_F); %构造目标函数的雅可比函数矩阵 J(a0, a1, a2, a3, a4, a5, T14, T24, T34, T11, T12, T13, T31, T32, T33) = jacobian(opt_F, [a0 a1 a2 a3 a4 a5]) J = matlabFunction(J); %构造目标函数的海塞矩阵 H(a0, a1, a2, a3, a4, a5, T14, T24, T34, T11, T12, T13, T31, T32, T33) = jacobian(J, [a0 a1 a2 a3 a4 a5]) H = matlabFunction(H); T = FKinematics(2, 0.5, -1.6, 0.6, 1.5, -0.9) X = IKinematics(opt_F, J, H, T); X T FKinematics(X(1), X(2), X(3), X(4), X(5), X(6)) function T = FKinematics(x1, x2, x3, x4, x5, x6) T1 = urdfJoint(0, 0, 0.3015, 0, 0, 0, x1); T2 = urdfJoint(0.077746, -0.0869967, 0.1465, 1.5708, 1.5708, 0, x2); T3 = urdfJoint(-0.64, 0, -0.015, 0, 0, 0, x3); T4 = urdfJoint(-0.195, 0.9055, -0.072, -1.5708, 0, 0, x4); T5 = urdfJoint(0, 0, 0, -1.6876, -1.5708, -3.0248, x5); T6 = urdfJoint(0, 0, 0, -1.5708, 0, -1.5708, x6); T7 = urdfJoint(0, 0, 0.08, 0, 0, 0, 0); %法兰盘的位姿 T = T1 * T2 * T3 * T4 * T5 * T6 * T7; end function X = IKinematics(opt_F, J, H, T) X = [0; 0; 0; 0; 0; 0]; X0 = [0; 0; 0; 0; 0; 0]; min_opt_value = opt_F(X0(1), X0(2), X0(3), X0(4), X0(5), X0(6), T(1, 4), T(2, 4), T(3, 4), T(1, 1), T(1, 2), T(1, 3), T(3, 1), T(3, 2), T(3, 3)); X_opt = X0; last_opt_value = min_opt_value; t0 = clock; for i = 1 : 1000 i Jn = J(X0(1), X0(2), X0(3), X0(4), X0(5), X0(6), T(1, 4), T(2, 4), T(3, 4), T(1, 1), T(1, 2), T(1, 3), T(3, 1), T(3, 2), T(3, 3)); Hn = H(X0(1), X0(2), X0(3), X0(4), X0(5), X0(6), T(1, 4), T(2, 4), T(3, 4), T(1, 1), T(1, 2), T(1, 3), T(3, 1), T(3, 2), T(3, 3)); %[U, S, V] = svd(Hn); %det_X = V * inv(S) * U' * Jn'; det_X = inv(Hn) * Jn'; X0 = X0 - det_X; X0'; opt_value = opt_F(X0(1), X0(2), X0(3), X0(4), X0(5), X0(6), T(1, 4), T(2, 4), T(3, 4), T(1, 1), T(1, 2), T(1, 3), T(3, 1), T(3, 2), T(3, 3)); if(min_opt_value > opt_value) min_opt_value = opt_value; X_opt = X0; end if(min_opt_value < 0.0001) break; end if(abs(last_opt_value - opt_value) < 0.00001) fprintf('陷入局部最小解,将重新生成迭代初始值'); X0 = randn(6, 1); end last_opt_value = opt_value; end t = etime(clock,t0); fprintf('solve time: %f', t); T; X = X_opt'; T1 = FKinematics(X_opt(1), X_opt(2), X_opt(3), X_opt(4), X_opt(5), X_opt(6)); end function T = urdfJoint(x0, y0, z0, R0, P0, Y0, theta) r1 = [1 0 0; 0 cos(R0) -sin(R0); 0 sin(R0) cos(R0)]; r2 = [ cos(P0) 0 sin(P0); 0 1 0; -sin(P0) 0 cos(P0)]; r3 = [cos(Y0) -sin(Y0) 0; sin(Y0) cos(Y0) 0; 0 0 1]; r = r3 * r2 * r1; T0 = [r(1, 1) r(1, 2) r(1, 3) x0; r(2, 1) r(2, 2) r(2, 3) y0; r(3, 1) r(3, 2) r(3, 3) z0; 0 0 0 1]; T = T0 * [cos(theta) -sin(theta) 0 0; sin(theta) cos(theta) 0 0; 0 0 1 0; 0 0 0 1]; end
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。