当前位置:   article > 正文

Postgresql中xlog生成和清理逻辑_pg的xlorg

pg的xlorg

0 前言

1、2部分是对XLOG生成和清理逻辑的分析,XLOG暴涨的处理直接看第3部分。

1 WAL归档

# 在自动的WAL检查点之间的日志文件段的最大数量
checkpoint_segments = 
# 在自动WAL检查点之间的最长时间
checkpoint_timeout = 
# 缓解io压力
checkpoint_completion_target = 
# 日志文件段的保存最小数量,为了备库保留更多段
wal_keep_segments = 
# 已完成的WAL段通过archive_command发送到归档存储
archive_mode = 
# 强制timeout切换到新的wal段文件
archive_timeout = 


max_wal_size = 
min_wal_size =
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

1.1 不开启归档时

文件数量受下面几个参数控制,通常不超过

(2 + checkpoint_completion_target) * checkpoint_segments + 1
  • 1

checkpoint_segments + wal_keep_segments + 1个文件。

如果一个旧段文件不再需要了会重命名然后继续覆盖使用,如果由于短期的日志输出高峰导致了超过

3 * checkpoint_segments + 1个文件,直接删除文件。

1.2 开启归档时

文件数量:删除归档成功的段文件

抽象来看一个运行的PG生成一个无限长的WAL日志序列。每段16M,这些段文件的名字是数值命名的,反映在WAL序列中的位置。在不用WAL归档的时候,系统通常只是创建几个段文件然后循环使用,方法是把不再使用的段文件重命名为更高的段编号。

当且仅当归档命令成功时,归档命令返回零。 在得到一个零值结果之后,PostgreSQL将假设该WAL段文件已经成功归档,稍后将删除段文件。一个非零值告诉PostgreSQL该文件没有被归档,会周期性的重试直到成功。

2 PG源码分析

2.1 删除逻辑

触发删除动作

RemoveOldXlogFiles
> CreateCheckPoint
> CreateRestartPoint
  • 1
  • 2
  • 3

wal_keep_segments判断(调用这个函数修改_logSegNo,然后再传入RemoveOldXlogFiles)

static void
KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
{
	XLogSegNo	segno;
	XLogRecPtr	keep;

	XLByteToSeg(recptr, segno);
	keep = XLogGetReplicationSlotMinimumLSN();

	/* compute limit for wal_keep_segments first */
	if (wal_keep_segments > 0)
	{
		/* avoid underflow, don't go below 1 */
		if (segno <= wal_keep_segments)
			segno = 1;
		else
			segno = segno - wal_keep_segments;
	}

	/* then check whether slots limit removal further */
	if (max_replication_slots > 0 && keep != InvalidXLogRecPtr)
	{
		XLogSegNo	slotSegNo;

		XLByteToSeg(keep, slotSegNo);

		if (slotSegNo <= 0)
			segno = 1;
		else if (slotSegNo < segno)
			segno = slotSegNo;
	}

	/* don't delete WAL segments newer than the calculated segment */
	if (segno < *logSegNo)
		*logSegNo = segno;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

删除逻辑

static void
RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr endptr)
{
    ...
    ...
	while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
	{
		/* Ignore files that are not XLOG segments */
		if (strlen(xlde->d_name) != 24 ||
			strspn(xlde->d_name, "0123456789ABCDEF") != 24)
			continue;

		/*
		 * We ignore the timeline part of the XLOG segment identifiers in
		 * deciding whether a segment is still needed.  This ensures that we
		 * won't prematurely remove a segment from a parent timeline. We could
		 * probably be a little more proactive about removing segments of
		 * non-parent timelines, but that would be a whole lot more
		 * complicated.
		 *
		 * We use the alphanumeric sorting property of the filenames to decide
		 * which ones are earlier than the lastoff segment.
		 */
		if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
		{
			if (XLogArchiveCheckDone(xlde->d_name))
                # 归档关闭返回真
                # 存在done文件返回真
                # 存在.ready返回假
                # recheck存在done文件返回真
                # 重建.ready文件返回假
			{
				/* Update the last removed location in shared memory first */
				UpdateLastRemovedPtr(xlde->d_name);
                
                # 回收 或者 直接删除,清理.done和.ready文件
				RemoveXlogFile(xlde->d_name, endptr);
			}
		}
	}
    ...
    ...
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

2.2 归档逻辑

static void
pgarch_ArchiverCopyLoop(void)
{
	char		xlog[MAX_XFN_CHARS + 1];
    
    # 拿到最老那个没有被归档的xlog文件名
	while (pgarch_readyXlog(xlog))
	{
		int			failures = 0;

		for (;;)
		{
			/*
			 * Do not initiate any more archive commands after receiving
			 * SIGTERM, nor after the postmaster has died unexpectedly. The
			 * first condition is to try to keep from having init SIGKILL the
			 * command, and the second is to avoid conflicts with another
			 * archiver spawned by a newer postmaster.
			 */
			if (got_SIGTERM || !PostmasterIsAlive())
				return;

			/*
			 * Check for config update.  This is so that we'll adopt a new
			 * setting for archive_command as soon as possible, even if there
			 * is a backlog of files to be archived.
			 */
			if (got_SIGHUP)
			{
				got_SIGHUP = false;
				ProcessConfigFile(PGC_SIGHUP);
			}

			# archive_command没设的话不再执行
            # 我们的command没有设置,走的是这个分支
			if (!XLogArchiveCommandSet())
			{
				/*
				 * Change WARNING to DEBUG1, since we will left archive_command empty to 
				 * let external tools to manage archive
				 */
				ereport(DEBUG1,
						(errmsg("archive_mode enabled, yet archive_command is not set")));
				return;
			}
            # 执行归档命令!
			if (pgarch_archiveXlog(xlog))
			{
				# 成功了,把.ready改名为.done
				pgarch_archiveDone(xlog);

				/*
				 * Tell the collector about the WAL file that we successfully
				 * archived
				 */
				pgstat_send_archiver(xlog, false);

				break;			/* out of inner retry loop */
			}
			else
			{
				/*
				 * Tell the collector about the WAL file that we failed to
				 * archive
				 */
				pgstat_send_archiver(xlog, true);

				if (++failures >= NUM_ARCHIVE_RETRIES)
				{
					ereport(WARNING,
							(errmsg("archiving transaction log file \"%s\" failed too many times, will try again later",
									xlog)));
					return;		/* give up archiving for now */
				}
				pg_usleep(1000000L);	/* wait a bit before retrying */
			}
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79

2.3 ready生成逻辑

static void
XLogWrite(XLogwrtRqst WriteRqst, bool flexible)
{
...
            if (finishing_seg)
			{
				issue_xlog_fsync(openLogFile, openLogSegNo);

				/* signal that we need to wakeup walsenders later */
				WalSndWakeupRequest();

				LogwrtResult.Flush = LogwrtResult.Write;		/* end of page */

                # 归档打开 && wal_level >= archive
				if (XLogArchivingActive())
                    # 生成ready文件
					XLogArchiveNotifySeg(openLogSegNo);

				XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
...
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

2.4 总结

  • ready文件只要满足archive_mode=on和wal_lever>=archive,就总会生成(XLogWrite函数调用生成)
    • 因为archive_command设置空,所以ready文件的消费完全由外部程序控制
  • done文件的处理由PG完成,两个地方会触发done文件处理,检查点和重启点
    • 处理多少done文件受wal_keep_segments和replication_slot控制(KeepLogSeg函数)

3 WAL段累积的原因(长求总?)

  • 注意:无论如何注意不要手动删除xlog文件

  • 注意:checkpoint产生的日志回不立即生成ready文件,是在下一个xlog后一块生成的

3.1 ReplicationSlot

打开流了复制槽

-- 流复制插槽
-- 如果restart_lsn和当前XLOG相差非常大的字节数, 需要排查slot的订阅者是否能正常接收XLOG, 
-- 或者订阅者是否正常. 长时间不将slot的数据取走, pg_xlog目录可能会撑爆
select pg_xlog_location_diff(pg_current_xlog_location(),restart_lsn), * 
from pg_replication_slots;
  • 1
  • 2
  • 3
  • 4
  • 5

删除

select pg_drop_replication_slot('xxx');
  • 1

删除后PG会在下一个checkpoint清理xlog

3.2 较大的wal_keep_segments

检查参数配置,注意打开这个参数会使xlog和ready有一定延迟

3.3 回收出现问题

如果不使用PG自动回收机制,数据库依赖外部程序修改.ready文件,需要检测回收进程

(archive_mode=on archive_command=’’)

3.4 检查点间隔过长

检查参数配置

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/135173
推荐阅读
相关标签
  

闽ICP备14008679号