赞
踩
在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型
、目标函数
、优化算法
这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了。在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力。我们还将介绍这种网络的训练算法:反向传播算法。最后,我们依然用代码实现一个神经网络。如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字。现在请做好准备,您即将双手触及到深度学习的大门。
神经元和感知器本质上是一样的,只不过我们说感知器的时候,它的激活函数是阶跃函数;而当我们说神经元时,激活函数往往选择为sigmoid
函数或tanh
函数。如下图所示:
计算一个神经元的输出的方法和计算一个感知器的输出是一样的。假设神经元的输入是向量 x ⃗ \vec{x}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。