当前位置:   article > 正文

OpenVINO之五:转换ONNX模型_onnx openvino网络层对应关系

onnx openvino网络层对应关系

1

2 OpenVINO支持的ONNX模型

2-1 支持的公共模型
  • bvlc_alexnet , bvlc_googlenet , bvlc_reference_caffenet , bvlc_reference_rcnn_ilsvrc13
  • inception_v1, inception_v2
  • resnet50
  • squeezenet
  • densenet121
  • emotion_ferplus
  • mnist
  • shufflenet
  • VGG19
  • zfnet512
2-2 支持的Pytorch模型

Torchvision Models:

  • alexnet,
  • densenet121, densenet161, densenet169, densenet201,
  • resnet101, resnet152, resnet18, resnet34, resnet50,
  • vgg11, vgg13, vgg16, vgg19

Pretrained Models:

  • alexnet,
  • fbresnet152,
  • resnet101, resnet152, resnet18, resnet34, resnet152, resnet18, resnet34, resnet50, resnext101_32x4d, resnext101_64x4d,
  • vgg11
2-3 支持的PaddlePaddle模型
  • fit_a_line
  • recognize_digits
  • VGG16
  • ResNet
  • MobileNet
  • SE_ResNeXt
  • Inception-v4

3 OpenVINO支持的ONNX层与其在Intermediate Representation (IR)中的对应关系

NUMBEROPERATOR NAME IN ONNX*LAYER TYPE IN THE INTERMEDIATE REPRESENTATION
1AddEltwise(operation = sum) (added ‘axis’ support)
2AveragePoolPooling (pool_method=avg)
3BatchNormalizationScaleShift (can be fused into Convlution or FC)
4ConcatConcat
5ConstantWill be removed on constant propagation step
6ConvConvolution
7ConvTransposeDeconvolution (added auto_pad and output_shape attributes support))
8DivEltwise(operation = mul)->Power
9DropoutIgnored, does not apeear in IR
10EluActivation (ELU)
11FlattenReshape
12GemmFullyConnected
13GlobalAveragePoolPooling (pool_method=avg)
14IdentityIgnored, does not appear in IR
15LRNNorm
16LeakyReluReLU
17MatMulFullyConnected
17MaxPoolPooling (pool_method=max)
19MulEltwise(operation = mul) (added ‘axis’ support)
20ReluReLU
21ReshapeReshape
22ShapeConstant propagation
23SoftmaxSoftMax
24SqueezeReshape
25SubPower->Eltwise(operation = sum)
26SumEltwise(operation = sum)
27TransposePermute
28UnsqueezeReshape
29UpsampleResample
30ImageScalerScaleShift
31AffineScaleShift
32ReciprocalPower(power=-1)
33CropSplit
34TanhActivation (operation = tanh)
35SigmoidActivation (operation = sigmoid)
36PowPower
37ConvTranspose
38GatherConstant propagation
39Constant_fillConstant propagation
40ReduceMeanReshape + Pooling(pool_method=avg) + Reshape
41ReduceSumReshape + Pooling(pool_method=avg) + Power(scale=reduce_dim_size) + Reshape
42GatherGather
43GemmGEMM
44GlobalMaxPoolPooling (pool_method=max)
45NegPower(scale=-1)
46PadPad
47ArgMaxArgMax
48ClipClamp
49DetectionOutput (experimental)DetectionOutputONNX
50PriorBox (experimental)PriorBoxONNX
51RNNSequenceTensorIterator(RNNCell)
52GRUSequenceTensorIterator(GRUCell)
53LSTMSequenceTensorIterator(LSTMCell)

参考资料:
1 Converting a ONNX* Model
2 Supported Framework Layers

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/161455
推荐阅读
相关标签
  

闽ICP备14008679号