赞
踩
下面给大家介绍一下数据在内存中的存储,这个是一个了解c语言内部的知识点,大家可以借此机会,修炼“内功”
首先在讲解操作符是时候,给大家讲解过:
整数的存储3种形式:原码、反码和补码
有符号的整数,三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,最高位的一位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表达方式各不相同。
原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
具体的示例,请前往《操作符—关于二进制的操作符》查看
下面便是一个新的知识点,大小端存储问题;
引子:
大家在VS2022,调试一下下面的代码,并且打开内存窗口
int main()
{
int a = 0x11223344;
return 0;
}
我们发现,0x11223344是倒着存放的,这就是我们所说的大小端问题。
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:
是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
上述概念需要记住,方便分辨大小端。
所以vs2022的存储方式是小段存储
练习1:
设计⼀个小程序来判断当前机器的字节序。
#include<stdio.h>
int test()
{
int a = 1;
return ((*(char*)&a));
}
int main()
{
int ret = test();
if (ret == 1)
printf("小段存储\n");
else
printf("大段存储\n");
return 0;
}
练习2:
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
练习3:
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
练习4:
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n",a);
return 0;
}
与上面方法类似,这里不再过多阐述。
练习5:
#include<stdio.h>
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
}
练习5:
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}
最后一个练习
#include <stdio.h>
//X86环境 ⼩端字节序
int main()
{
int a[4] = { 1, 2, 3, 4 };
int *ptr1 = (int *)(&a + 1);
int *ptr2 = (int *)((int)a + 1);
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}
常见的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。
浮点数表示的范围: float.h 中定义
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
输出什么?
上⾯的代码中, num 和 *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
根据国际标准IEEE(电子和电子工程协会) 754,任意⼀个⼆进制浮点数V可以表示成下面的形式:
V = (−1) ∗ S M ∗ 2E
• (−1)S 表示符号位,当S=0,V为正数;当S=1,V为负数
• M 表⽰有效数字,M是大于等于1,小于2的
• 2E 表示指数位
举例来说:
十进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
注:借用一下比特就业课的照片
3.2.1 浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂
首先,E为⼀个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0–255;如果E为11位,它的取值范围为0~2047。但是,我
们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其
阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补⻬0到23位
00000000000000000000000,则其⼆进制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
0 00000000 00100000000000000000000
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
0 11111111 00010000000000000000000
好了,关于浮点数的表示规则,就说到这里。
完
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。