赞
踩
链接: 哈希表
刷题参考:《代码随想录》
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = “anagram”, t = “nagaram” 输出: true
示例 2: 输入: s = “rat”, t = “car” 输出: false
说明: 你可以假设字符串只包含小写字母。
class Solution { public: bool isAnagram(string s, string t) { int record[26] = {0}; for (int i = 0; i < s.size(); i++) { // 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了 record[s[i] - 'a']++; } for (int i = 0; i < t.size(); i++) { record[t[i] - 'a']--; } for (int i = 0; i < 26; i++) { if (record[i] != 0) { // record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。 return false; } } // record数组所有元素都为零0,说明字符串s和t是字母异位词 return true; } };
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。
示例 1:输入:nums1 = [1,2,2,1], nums2 = [2,2],输出:[2]
示例 2:输入:nums1 = [4,9,5], nums2 = [9,4,9,8,4],输出:[9,4],解释:[4,9] 也是可通过的
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重
unordered_set<int> nums_set(nums1.begin(), nums1.end());
for (int num : nums2) {
// 发现nums2的元素 在nums_set里又出现过
if (nums_set.find(num) != nums_set.end()) {
result_set.insert(num);
}
}
return vector<int>(result_set.begin(), result_set.end());
}
};
直接使用set 不仅占用空间比数组大,而且速度要比数组慢,set把数值映射到key上都要做hash计算的。而如果哈希值比较少、特别分散、跨度非常大,使用数组就造成空间的极大浪费。
此题目限制了范围,因此可用数组。
1 <= nums1.length, nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 1000
class Solution { public: vector<int> intersection(vector<int>& nums1, vector<int>& nums2) { unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重 int hash[1005] = {0}; // 默认数值为0 for (int num : nums1) { // nums1中出现的字母在hash数组中做记录 hash[num] = 1; } for (int num : nums2) { // nums2中出现话,result记录 if (hash[num] == 1) { result_set.insert(num); } } return vector<int>(result_set.begin(), result_set.end()); } };
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」 定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。 然后重复这个过程直到 这个数变为 1,也可能是 无限循环 但始终变不到 1。 如果这个过程 结果为 1,那么这个数就是快乐数。 如果 n 是快乐数就返回 true ;不是,则返回 false 。
示例 1:
输入:n = 19,输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
题目中说了会 无限循环,那么也就是说求和的过程中,sum会重复出现,这对解题很重要!
为何不会无限变大: LeetCode-Solution
我们不是只跟踪链表中的一个值,而是跟踪两个值,称为快跑者和慢跑者。在算法的每一步中,慢速在链表中前进 1 个节点,快跑者前进 2 个节点(对 getNext(n) 函数的嵌套调用)。
如果 n 是一个快乐数,即没有循环,那么快跑者最终会比慢跑者先到达数字 1。
如果 n 不是一个快乐的数字,那么最终快跑者和慢跑者将在同一个数字上相遇。
注意:此题不建议用集合记录每次的计算结果来判断是否进入循环,因为这个集合可能大到无法存储;另外,也不建议使用递归,同理,如果递归层次较深,会直接导致调用栈崩溃。不要因为这个题目给出的整数是 int 型而投机取巧。
class Solution { public: int getSum(int n) { int sum = 0; while (n) { sum += (n % 10) * (n % 10); n /= 10; } return sum; } bool isHappy(int n) { int slow = n, fast = n; do{ slow = getSum(slow); fast = getSum(fast); fast = getSum(fast); }while(slow != fast); return slow == 1; } };
class Solution { public: // 取数值各个位上的单数之和 int getSum(int n) { int sum = 0; while (n) { sum += (n % 10) * (n % 10); n /= 10; } return sum; } bool isHappy(int n) { unordered_set<int> set; while(1) { int sum = getSum(n); if (sum == 1) { return true; } // 如果这个sum曾经出现过,说明已经陷入了无限循环了,立刻return false if (set.find(sum) != set.end()) { return false; } else { set.insert(sum); } n = sum; } } };
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9,因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { std::unordered_map <int,int> map; for(int i = 0; i < nums.size(); i++) { // 遍历当前元素,并在map中寻找是否有匹配的key auto iter = map.find(target - nums[i]); if(iter != map.end()) { return {iter->second, i}; } // 如果没找到匹配对,就把访问过的元素和下标加入到map中 map.insert(pair<int, int>(nums[i], i)); } return {}; } };
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。 为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500。所有整数的范围在 -2^28 到 2^28 - 1 之间,最终结果不会超过 2^31 - 1 。
例如:输入: A = [ 1, 2],B = [-2,-1],C = [-1, 2],D = [ 0, 2] 。 输出:2,两个元组如下:
(0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
(1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
class Solution { public: int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) { unordered_map<int, int> map; int ret = 0; for(int i = 0; i < nums1.size(); i++) { for(int j = 0; j < nums2.size(); j++) { map[nums1[i] + nums2[j]]++; } } for(int i = 0; i < nums3.size(); i++) { for(int j = 0; j < nums4.size(); j++) { auto it = map.find(0 - nums3[i] - nums4[j]); if(it != map.end()) { ret += it->second; } } } return ret; } };
给定一个赎金信 (ransom) 字符串和一个杂志(magazine)字符串,判断第一个字符串 ransom 能不能由第二个字符串magazines 里面的字符构成。如果可以构成,返回 true ;否则返回 false。 注意:你可以假设两个字符串均只含有小写字母。
canConstruct(“a”, “b”) : false canConstruct(“aa”, “ab”) :false
canConstruct(“aa”, “aab”) : true
class Solution { public: bool canConstruct(string ransomNote, string magazine) { int record[26] = {0}; //add if (ransomNote.size() > magazine.size()) { return false; } for (int i = 0; i < magazine.length(); i++) { // 通过recode数据记录 magazine里各个字符出现次数 record[magazine[i]-'a'] ++; } for (int j = 0; j < ransomNote.length(); j++) { // 遍历ransomNote,在record里对应的字符个数做--操作 record[ransomNote[j]-'a']--; // 如果小于零说明ransomNote里出现的字符,magazine没有 if(record[ransomNote[j]-'a'] < 0) { return false; } } return true; } };
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。 注意: 答案中不可以包含重复的三元组。
示例:给定数组 nums = [-1, 0, 1, 2, -1, -4],满足要求的三元组集合为: [ [-1, 0, 1], [-1, -1, 2] ]
class Solution { public: vector<vector<int>> threeSum(vector<int>& nums) { vector<vector<int>> result; sort(nums.begin(), nums.end()); // 找出a + b + c = 0 // a = nums[i], b = nums[left], c = nums[right] for (int i = 0; i < nums.size(); i++) { // 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了 if (nums[i] > 0) { return result; } // 错误去重a方法,将会漏掉-1,-1,2 这种情况 //我们要做的是不能有重复的三元组,但三元组内的元素是可以重复的! /* if (nums[i] == nums[i + 1]) { continue; } */ // 正确去重a方法 if (i > 0 && nums[i] == nums[i - 1]) { continue; } int left = i + 1; int right = nums.size() - 1; while (right > left) { // 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组 /* while (right > left && nums[right] == nums[right - 1]) right--; while (right > left && nums[left] == nums[left + 1]) left++; */ if (nums[i] + nums[left] + nums[right] > 0) right--; else if (nums[i] + nums[left] + nums[right] < 0) left++; else { result.push_back(vector<int>{nums[i], nums[left], nums[right]}); // 去重逻辑应该放在找到一个三元组之后,对b 和 c去重 while (right > left && nums[right] == nums[right - 1]) right--; while (right > left && nums[left] == nums[left + 1]) left++; // 找到答案时,双指针同时收缩 right--; left++; } } } return result; } };
题意:给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。 注意:答案中不可以包含重复的四元组。
示例:给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。
满足要求的四元组集合为: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
class Solution { public: vector<vector<int>> fourSum(vector<int>& nums, int target) { vector<vector<int>> result; sort(nums.begin(), nums.end()); for (int k = 0; k < nums.size(); k++) { // 剪枝处理,target可能为负 if (nums[k] > target && nums[k] >= 0) { break; // 这里使用break,统一通过最后的return返回 } // 对nums[k]去重 if (k > 0 && nums[k] == nums[k - 1]) { continue; } for (int i = k + 1; i < nums.size(); i++) { // 2级剪枝处理 if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) { break; } // 对nums[i]去重 if (i > k + 1 && nums[i] == nums[i - 1]) { continue; } int left = i + 1; int right = nums.size() - 1; while (right > left) { // nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出 if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) { right--; // nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出 } else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) { left++; } else { result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]}); // 对nums[left]和nums[right]去重 while (right > left && nums[right] == nums[right - 1]) right--; while (right > left && nums[left] == nums[left + 1]) left++; // 找到答案时,双指针同时收缩 right--; left++; } } } } return result; } };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。