当前位置:   article > 正文

Python_001_旅游评论情感倾向性分析_002_基于glove词向量训练_基于python景区评论情感分析 毕设

基于python景区评论情感分析 毕设

Python_001_旅游评论情感倾向性分析_002_基于glove词向量训练

一、训练词向量

关于词向量的训练参考文章:
https://blog.csdn.net/weixin_37947156/article/details/83145778
https://blog.csdn.net/weixin_40952784/article/details/100729036

二、跑分

from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import jieba as jb
import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
import warnings

warnings.filterwarnings("ignore")  # 忽略版本问题
def loadGLoveModel(filename):
    embeddings_index = {}
    f = open(filename, encoding='UTF-8')
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
        embeddings_index[word] = coefs
    f.close()
    return embeddings_index

def suc_train(train_vecs, y_train, test_vecs, y_test):
    # 创建SVC模型
    print("#创建SVC模型")
    cls = SVC(kernel="rbf", verbose=True, shrinking=0)
    # 训练模型#
    cls.fit(train_vecs, y_train)  # 训练集数据,第二个是训练集标签
    # 保存模型
    joblib.dump(cls, "../model/svcmodel.pkl")
    # 输出评分
    print("SVC评分:", cls.score(test_vecs, y_test))
    return cls.score(test_vecs, y_test)

def logistic_train(train_vecs, y_train, test_vecs, y_test):
    print("#创建逻辑回归模型")
    # 训练模型#
    regr = LogisticRegression()
    regr.fit(train_vecs, y_train)
    # 保存模型
    joblib.dump(regr, "../model/logisticmodel.pkl")
    print("Logisitic评分:", regr.score(test_vecs, y_test))
    return regr.score(test_vecs, y_test)
def naivenayesian_train(train_vecs, y_train, test_vecs, y_test):
    print("#创建高斯朴素贝叶斯模型")
    clf = GaussianNB()
    # 利用朴素贝叶斯做训练
    clf.fit(train_vecs, y_train)
    # 保存模型
    joblib.dump(clf, "../model/naivenayesianmodel.pkl")
    print("高斯朴素贝叶斯评分:", clf.score(test_vecs, y_test))
    return clf.score(test_vecs, y_test)
def SVM_PRF():
    #print("#SVC模型性能评估")
    train_vecs = np.load("../model/train_vecs.npy")
    regr = joblib.load("../model/svcmodel.pkl")
    y_pred = regr.predict(train_vecs)
    y_true = np.load("../model/y_train.npy")
    y_pred = y_pred.astype(np.int)
    y_true = y_true.astype(np.int)
    tp = sum(y_true & y_pred)  # 结果1
    fp = sum((y_true == 0) & (y_pred == 1))  # 结果1
    tn = sum((y_true == 0) & (y_pred == 0))  # 结果0
    fn = sum((y_true == 1) & (y_pred == 0))  # 结果2
    # print("tp", tp)
    # print("fp", fp)
    # print("tn", tn)
    # print("fn", fn)
    POS_P = tp / (tp + fp)
    POS_R = tp / (tp + fn)
    POS_F = (2 * POS_R * POS_P) / (POS_R + POS_P)
    NEG_P = tn / (tn + fn)
    NEG_R = tn / (tn + fp)
    NEG_F = (2 * NEG_R * NEG_P) / (NEG_R + NEG_P)
    print("POS_P", POS_P)
    print("POS_R", POS_R)
    print("POS_F", POS_F)
    print("NEG_P", NEG_P)
    print("NEG_R", NEG_R)
    print("NEG_F", NEG_F)
    print(POS_P)
    print(POS_R)
    print(POS_F)
    print(NEG_P)
    print(NEG_R)
    print(NEG_F)

def logistic_PRF():
    #print("#逻辑回归模型性能评估")
    train_vecs = np.load("../model/train_vecs.npy")
    regr = joblib.load("../model/logisticmodel.pkl")
    y_pred = regr.predict(train_vecs)
    y_true = np.load("../model/y_train.npy")
    y_pred = y_pred.astype(np.int)
    y_true = y_true.astype(np.int)
    tp = sum(y_true & y_pred)  # 结果1
    fp = sum((y_true == 0) & (y_pred == 1))  # 结果1
    tn = sum((y_true == 0) & (y_pred == 0))  # 结果0
    fn = sum((y_true == 1) & (y_pred == 0))  # 结果2
    # print("tp", tp)
    # print("fp", fp)
    # print("tn", tn)
    # print("fn", fn)
    POS_P = tp / (tp + fp)
    POS_R = tp / (tp + fn)
    POS_F = (2 * POS_R * POS_P) / (POS_R + POS_P)
    NEG_P = tn / (tn + fn)
    NEG_R = tn / (tn + fp)
    NEG_F = (2 * NEG_R * NEG_P) / (NEG_R + NEG_P)
    print("POS_P", POS_P)
    print("POS_R", POS_R)
    print("POS_F", POS_F)
    print("NEG_P", NEG_P)
    print("NEG_R", NEG_R)
    print("NEG_F", NEG_F)
    print(POS_P)
    print(POS_R)
    print(POS_F)
    print(NEG_P)
    print(NEG_R)
    print(NEG_F)
def naivenayesian_PRF():
    #print("#高斯朴素贝叶斯模型性能评估")
    train_vecs = np.load("../model/train_vecs.npy")
    regr = joblib.load("../model/naivenayesianmodel.pkl")
    y_pred = regr.predict(train_vecs)
    y_true = np.load("../model/y_train.npy")
    y_pred = y_pred.astype(np.int)
    y_true = y_true.astype(np.int)
    tp = sum(y_true & y_pred)  # 结果1
    fp = sum((y_true == 0) & (y_pred == 1))  # 结果1
    tn = sum((y_true == 0) & (y_pred == 0))  # 结果0
    fn = sum((y_true == 1) & (y_pred == 0))  # 结果2
    # print("tp", tp)
    # print("fp", fp)
    # print("tn", tn)
    # print("fn", fn)
    POS_P = tp / (tp + fp)
    POS_R = tp / (tp + fn)
    POS_F = (2 * POS_R * POS_P) / (POS_R + POS_P)
    NEG_P = tn / (tn + fn)
    NEG_R = tn / (tn + fp)
    NEG_F = (2 * NEG_R * NEG_P) / (NEG_R + NEG_P)
    print("POS_P", POS_P)
    print("POS_R", POS_R)
    print("POS_F", POS_F)
    print("NEG_P", NEG_P)
    print("NEG_R", NEG_R)
    print("NEG_F", NEG_F)
    print(POS_P)
    print(POS_R)
    print(POS_F)
    print(NEG_P)
    print(NEG_R)
    print(NEG_F)

def build_vector(text, size, wv):
    # 创建一个指定大小的数据空间
    # print("#创建空间")
    vec = np.zeros(size).reshape((1, size))

    # count是统计有多少词向量
    count = 0
    # 循环所有的词向量进行求和
    for w in text:
        try:
            vec += wv[w].reshape((1, size))
            count += 1
            # print(w)
        except:
            continue

    # 循环完成后求均值
    if count!=0:
        vec/=count
    return vec
i=50
#if __name__ == '__main__':
while i<=50:
    print("开始启动",i)
    #List, labelList = loadData()  # 加载语料数据
    neg = pd.read_excel("../originalData/yn_neg.xlsx", header=None)  # 消极
    pos = pd.read_excel("../originalData/yn_pos.xlsx", header=None)  # 积极
    # 这是两类数据都是x值
    pos['words'] = pos[0].apply(lambda x: list(jb.cut(x)))
    neg['words'] = neg[0].apply(lambda x: list(jb.cut(x)))
    # 分词
    y = np.concatenate((np.ones(len(pos)), np.zeros(len(neg))))
    # 需要y值  0 代表neg 1代表是pos
    X = np.concatenate((pos['words'], neg['words']))
    print("X-size:", len(X))
    # 数组拼接
    # 切分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=3)
    np.save("../model/y_train.npy", y_train)
    np.save("../model/y_test.npy", y_test)
    # print(X_train)
    np.save("../model/x_train.npy", X_train)
    np.save("../model/x_test.npy", X_test)

    gloveModel = loadGLoveModel('../gloveWordVector/yn_' +str(i)+'.txt')

    train_vecs = np.concatenate([build_vector(z, i,gloveModel) for z in X_train])
    np.save('../model/train_vecs.npy', train_vecs)
    #print(train_vecs)
    test_vecs = np.concatenate([build_vector(z, i,gloveModel) for z in X_test])
    np.save('../model/test_vecs.npy', test_vecs)
    s=suc_train(train_vecs, y_train, test_vecs, y_test)  # SVC
    l=logistic_train(train_vecs, y_train, test_vecs, y_test)  # logistic回归
    n=naivenayesian_train(train_vecs, y_train, test_vecs, y_test)  # 朴素贝叶斯
    #print(s)
    SVM_PRF()
    #print(l)
    logistic_PRF()
    #print(n)
    naivenayesian_PRF()
    i+=50
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217

数据下载:

https://www.aliyundrive.com/s/rPNV3YXWjEy

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/719814
推荐阅读
相关标签
  

闽ICP备14008679号