赞
踩
从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。
目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:(1)BP(BackPropagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且识别精度难以达到要求。
(2)Hopfield神经网络。属于反馈式网络。主要采用Hebb规则进行学习,一般情况下计算的收敛速度较快。
这种网络是美国物理学家J.J.Hopfield于1982年首先提出的,它主要用于模拟生物神经网络的记忆机理。
Hopfield神经网络状态的演变过程是一个非线性动力学系统,可以用一组非线性差分方程来描述。
系统的稳定性可用所谓的“能量函数”进行分析,在满足一定条件下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。
Hopfield网络的演变过程是一种计算联想记忆或求解优化问题的过程。(3)Kohonen网络。
这是一种由芬兰赫尔辛基大学神经网络专家Kohonen(1981)提出的自组织神经网络,其采用了无导师信息的学习算法,这种学习算法仅根据输入数据的属性而调整权值,进而完成向环境学习、自动分类和聚类等任务。
其最大的优点是最终的各个相邻聚类之间是有相似关系的,即使识别时把样本映射到了一个错误的节点,它也倾向于被识别成同一个因素或者一个相近的因素,这就十分接近人的识别特性。
神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络爱发猫 www.aifamao.com。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。
前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。
Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。模拟退火算法是为解决优化计算中局部极小问题提出的。
Baltzmann机是具有随机输出值单元的随机神经网络,串行的Baltzmann机可以看作是对二次组合优化问题的模拟退火算法的具体实现,同时它还可以模拟外界的概率分布,实现概率意义上的联想记忆。
自组织竞争型神经网络的特点是能识别环境的特征并自动聚类。自组织竟争型神经网络已成功应用于特征抽取和大规模数据处理。
。
人工神经网络(ArtificialNeuralNetwork,即ANN)是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。