赞
踩
原文参考:二分查找算法详解
思路
我相信对很多读者朋友来说,编写二分查找的算法代码属于玄学编程,虽然看起来很简单,就是会出错,要么会漏个等号,要么少加个 1。
不要气馁,因为二分查找其实并不简单。看看 Knuth 大佬(发明 KMP 算法的那位)怎么说的:
- Although the basic idea of binary search is comparatively straightforward,
- the details can be surprisingly tricky...
这句话可以这样理解:思路很简单,细节是魔鬼。
本文以问答的形式,探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。第一个场景是最简单的算法形式,解决 这道题,后两个场景就是本题。
而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。
- int binarySearch(int[] nums, int target) {
- int left = 0, right = ...;
-
- while(...) {
- int mid = (right + left) / 2;
- if (nums[mid] == target) {
- ...
- } else if (nums[mid] < target) {
- left = ...
- } else if (nums[mid] > target) {
- right = ...
- }
- }
- return ...;
- }
分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。
其中 ...
标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。
另外声明一下,计算 mid 时需要技巧防止溢出,即 mid=left+(right-left)/2
。本文暂时忽略这个问题。
这个场景是最简单的,肯能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。
- int binarySearch(int[] nums, int target) {
- int left = 0;
- int right = nums.length - 1; // 注意
-
- while(left <= right) {
- int mid = (right + left) / 2;
- if(nums[mid] == target)
- return mid;
- else if (nums[mid] < target)
- left = mid + 1; // 注意
- else if (nums[mid] > target)
- right = mid - 1; // 注意
- }
- return -1;
- }
1. 为什么 while 循环的条件中是 <=,而不是 < ?
答:因为初始化 right
的赋值是 nums.length-1
,即最后一个元素的索引,而不是 nums.length
。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right]
,后者相当于左闭右开区间 [left, right)
,因为索引大小为 nums.length
是越界的。
我们这个算法中使用的是前者 [left, right]
两端都闭的区间。这个区间其实就是每次进行搜索的区间,我们不妨称为「搜索区间」。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
- if(nums[mid] == target)
- return mid;
但如果没找到,就需要 while
循环终止,然后返回 -1
。那 while
循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
while(left <= right)
的终止条件是 left == right + 1
,写成区间的形式就是 [right + 1, right]
,或者带个具体的数字进去 [3, 2]
,可见这时候搜索区间为空,因为没有数字既大于等于 33 又小于等于 22 的吧。所以这时候 while
循环终止是正确的,直接返回 -1
即可。
while(left < right)
的终止条件是 left == right
,写成区间的形式就是 [left, right]
,或者带个具体的数字进去 [2, 2]
,这时候搜索区间非空,还有一个数 22,但此时 while
循环终止了。也就是说这区间 [2, 2]
被漏掉了,索引 22 没有被搜索,如果这时候直接返回 -1
就是错误的。
当然,如果你非要用 while(left < right)
也可以,我们已经知道了出错的原因,就打个补丁好了:
- //...
- while(left < right) {
- // ...
- }
- return nums[left] == target ? left : -1;
2. 为什么 left = mid + 1
,right = mid - 1
?我看有的代码是 right = mid
或者 left = mid
,没有这些加加减减,到底怎么回事,怎么判断?
答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]
。那么当我们发现索引 mid
不是要找的 target
时,如何确定下一步的搜索区间呢?
当然是 [left, mid - 1]
或者 [mid + 1, right]
对不对?因为 mid
已经搜索过,应该从搜索区间中去除。
3. 此算法有什么缺陷?
答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组 nums = [1,2,2,2,3]
,target = 2
,此算法返回的索引是 22,没错。但是如果我想得到 target
的左侧边界,即索引 11,或者我想得到 target
的右侧边界,即索引 33,这样的话此算法是无法处理的。
这样的需求很常见。你也许会说,找到一个 target
,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。
直接看代码,其中的标记是需要注意的细节:
- int left_bound(int[] nums, int target) {
- if (nums.length == 0) return -1;
- int left = 0;
- int right = nums.length; // 注意
-
- while (left < right) { // 注意
- int mid = (left + right) / 2;
- if (nums[mid] == target) {
- right = mid;
- } else if (nums[mid] < target) {
- left = mid + 1;
- } else if (nums[mid] > target) {
- right = mid; // 注意
- }
- }
- return left;
- }
1. 为什么 while(left < right)
而不是 <= ?
答:用相同的方法分析,因为 right = nums
.length
而不是 nums
.length - 1
。因此每次循环的「搜索区间」是 [left, right)
左闭右开。
while(left < right)
终止的条件是 left == right
,此时搜索区间 [left, left)
为空,所以可以正确终止。
2. 为什么没有返回 -1
的操作?如果 nums
中不存在 target
这个值,怎么办?
答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:
对于这个数组,算法会返回 11。这个 11 的含义可以这样解读:nums
中小于 22 的元素有 11 个。
比如对于有序数组 nums = [2,3,5,7]
, target = 1
,算法会返回 00,含义是:nums
中小于 11 的元素有 00 个。
再比如说 nums
不变,target = 8
,算法会返回 44,含义是:nums
中小于 88 的元素有 44 个。
综上可以看出,函数的返回值(即 left
变量的值)取值区间是闭区间 [0, nums.length]
,所以我们简单添加两行代码就能在正确的时候 return -1
:
- while (left < right) {
- //...
- }
- // target 比所有数都大
- if (left == nums.length) return -1;
- // 类似之前算法的处理方式
- return nums[left] == target ? left : -1;
3. 为什么 left = mid + 1
,right = mid ?
和之前的算法不一样?
答:这个很好解释,因为我们的「搜索区间」是 [left, right)
左闭右开,所以当 nums[mid]
被检测之后,下一步的搜索区间应该去掉 mid
分割成两个区间,即 [left, mid)
或 [mid + 1, right)
。
4. 为什么该算法能够搜索左侧边界?
答:关键在于对于 nums[mid]
== target
这种情况的处理:
- if (nums[mid] == target)
- right = mid;
可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid)
中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。
5. 为什么返回 left
而不是 right
?
答:都是一样的,因为 while
终止的条件是 left == right
。
寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:
- int right_bound(int[] nums, int target) {
- if (nums.length == 0) return -1;
- int left = 0, right = nums.length;
-
- while (left < right) {
- int mid = (left + right) / 2;
- if (nums[mid] == target) {
- left = mid + 1; // 注意
- } else if (nums[mid] < target) {
- left = mid + 1;
- } else if (nums[mid] > target) {
- right = mid;
- }
- }
- return left - 1; // 注意
- }
1. 为什么这个算法能够找到右侧边界?
答:类似地,关键点还是这里:
- if (nums[mid] == target) {
- left = mid + 1;
当 nums[mid] == target
时,不要立即返回,而是增大「搜索区间」的下界 left
,使得区间不断向右收缩,达到锁定右侧边界的目的。
2. 为什么最后返回 left - 1
而不像左侧边界的函数,返回 left
?而且我觉得这里既然是搜索右侧边界,应该返回 right
才对。
答:首先,while
循环的终止条件是 left == right
,所以 left
和 right
是一样的,你非要体现右侧的特点,返回 right - 1
好了。
至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:
- if (nums[mid] == target) {
- left = mid + 1;
- // 这样想: mid = left - 1
因为我们对 left
的更新必须是 left = mid + 1
,就是说 while
循环结束时,nums[left]
一定不等于 target
了,而 nums[left-1]
可能是 target
。更多精彩文章欢迎关注我的众公号 labuladong。
至于为什么 left
的更新必须是 left = mid + 1
,同左侧边界搜索,就不再赘述。
3. 为什么没有返回 -1−1 的操作?如果 nums
中不存在 target
这个值,怎么办?
答:类似之前的左侧边界搜索,因为 while
的终止条件是 left == right
,就是说 left
的取值范围是 [0, nums.length]
,所以可以添加两行代码,正确地返回 -1−1:
- while (left < right) {
- // ...
- }
- if (left == 0) return -1;
- return nums[left-1] == target ? (left-1) : -1;
四、最后总结
来梳理一下这些细节差异的因果逻辑:
第一个,最基本的二分查找算法:
- 因为我们初始化 right = nums.length - 1
- 所以决定了我们的「搜索区间」是 [left, right]
- 所以决定了 while (left <= right)
- 同时也决定了 left = mid+1 和 right = mid-1
-
- 因为我们只需找到一个 target 的索引即可
- 所以当 nums[mid] == target 时可以立即返回
第二个,寻找左侧边界的二分查找:
- 因为我们初始化 right = nums.length
- 所以决定了我们的「搜索区间」是 [left, right)
- 所以决定了 while (left < right)
- 同时也决定了 left = mid + 1 和 right = mid
-
- 因为我们需找到 target 的最左侧索引
- 所以当 nums[mid] == target 时不要立即返回
- 而要收紧右侧边界以锁定左侧边界
第三个,寻找右侧边界的二分查找:
- 因为我们初始化 right = nums.length
- 所以决定了我们的「搜索区间」是 [left, right)
- 所以决定了 while (left < right)
- 同时也决定了 left = mid + 1 和 right = mid
-
- 因为我们需找到 target 的最右侧索引
- 所以当 nums[mid] == target 时不要立即返回
- 而要收紧左侧边界以锁定右侧边界
-
- 又因为收紧左侧边界时必须 left = mid + 1
- 所以最后无论返回 left 还是 right,必须减一
如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。
通过本文,你学会了:
分析二分查找代码时,不要出现 else
,全部展开成 else if
方便理解。
注意「搜索区间」和 while
的终止条件,如果存在漏掉的元素,记得在最后检查。
如需要搜索左右边界,只要在 nums[mid] == target
时做修改即可。搜索右侧时需要减一。
以后就算遇到其他的二分查找变形,运用这几点技巧,也能保证你写出正确的代码。
最后,点击我的头像可以查看更多详细题解,希望读者多多点赞,让我感受到你的认可~
如果本文对你有帮助,欢迎关注我的众公号 labuladong 致力于把算法问题讲清楚~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。