赞
踩
学习Machine Learning也有很长一段时间了,前段时间在paper中应用了GTB(Gradient Tree Boosting)算法。在我的数据集上GTB的performance比Random Forest要稍微强一点,整个experiment做完之后,有许多东西都来不及及时整理,很多都遗忘了。打算接下来的时间里,好好整理下自己的学习资料,这份资料绝对不是一时半会就整理得完的,先开个头吧,以后会间断性更新该blog的。
下面来做个资料整理吧。
机器学习的书籍很多,下面推荐几本本人用过而且觉得还不错的书籍。优于机器学习是一门跨领域的学科,所以在书籍上并非全是机器学习的书籍:
机器学习的tools很多,这里只列出几个参考工具。
下面给出一个比较图,具体想要学什么,还需自己抉择。
由于本人比较崇拜Andrew Ng,所以关于视频,首先推荐的便是Andrew Ng的斯坦福大学的机器学习课程。这套视频在网上有两个网址,国外和国内的都有,全程英语教学,内容很好,有时间建议你去听听:
下面是一个机器学习视频库,由加州理工学院(Caltech)出品。
其它的视频库
机器学习最近在国内比较火,许多培训机构都相应的开了该门课程,如果想要听中文教程的,可以去网上搜索下,这里就不给培训机构打广告了。
大牛们的博客,会让你感到兴奋,让你觉得你不是一个人在奋斗,让你时刻记住你的前方已经有很多的学者正在等着你,你要加油。他们的经验会让我们少走些冤枉路,能让我们在他们的基础上进一步理解。下面推荐几个我所知道的或者说我了解到的几位牛人博客和几篇文章:
如果你想搜索比较新颖的机器学习资料或是文章,可以到以下网站中搜索,里面不仅包括了机器学习的内容,还有许多其它相关领域内容,如数据科学和云计算等。
关于数据分析的竞赛,国内国外都有,下面推荐几个比较火的竞赛网站 :
下面是本人在CSDN云计算栏目发布的翻译文章,如有翻译不准确的地方,还望多多包涵,希望能给大家带来点帮助,译文列表如下:
下面是相关译者的译文,仅供参考:
从这些牛人的博客中,你能学到很多。慢慢地你会体会到,不是你一个人在战斗,还有很多人,所以你不用害怕孤独。
最后,关于机器学习资料的整理,先到此为止吧,如果你有什么好的资料,欢迎在评论中给出推荐或网址链接。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。