赞
踩
目录
缩写:MLP,这是一种人工神经网络,由一个输入层、一个或多个隐藏层以及一个输出层组成,每一层都由多个节点(神经元)构成。在MLP中,节点之间只有前向连接,没有循环连接,这使得它属于前馈神经网络的一种。每个节点都应用一个激活函数,如sigmoid、ReLU等,以引入非线性,从而使网络能够拟合复杂的函数和数据分布。
- import torch
- import torch.nn as nn
- import torch.optim as optim
- from torchvision import datasets, transforms
- from torch.utils.data import DataLoader
-
- # Step 1: Define the MLP model
- class SimpleMLP(nn.Module):
- def __init__(self):
- super(SimpleMLP, self).__init__()
- self.fc1 = nn.Linear(784, 128) # Input layer to hidden layer
- self.fc2 = nn.Linear(128, 64) # Hidden layer to another hidden layer
- self.fc3 = nn.Linear(64, 10) # Hidden layer to output layer
- self.relu = nn.ReLU()
-
- def forward(self, x):
- x = x.view(-1, 784) # Flatten the input from 28x28 to 784
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
- # Step 2: Load MNIST dataset
- transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
- train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
- test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
-
- train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
- test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
-
- # Step 3: Define loss function and optimizer
- model = SimpleMLP()
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(), lr=0.01)
-
- # Step 4: Train the model
- num_epochs = 5
- for epoch in range(num_epochs):
- for batch_idx, (data, target) in enumerate(train_loader):
- optimizer.zero_grad()
- output = model(data)
- loss = criterion(output, target)
- loss.backward()
- optimizer.step()
- if batch_idx % 100 == 0:
- print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
- epoch, batch_idx * len(data), len(train_loader.dataset),
- 100. * batch_idx / len(train_loader), loss.item()))
-
- # Step 5: Evaluate the model on the test set (optional)
- with torch.no_grad():
- correct = 0
- total = 0
- for images, labels in test_loader:
- outputs = model(images)
- _, predicted = torch.max(outputs.data, 1)
- total += labels.size(0)
- correct += (predicted == labels).sum().item()
-
- print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))

在神经网络中
线性变换通常指的是权重矩阵和输入数据的矩阵乘法,再加上偏置向量。数学上,对于一个输入向量
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/848688
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。