赞
踩
LLMs:Chinese-LLaMA-Alpaca-2(基于deepspeed框架)的简介、安装、案例实战应用之详细攻略
导读:2023年07月31日,哈工大讯飞联合实验室,发布Chinese-LLaMA-Alpaca-2,本项目基于Meta发布的可商用大模型Llama-2开发,是中文LLaMA&Alpaca大模型的第二期项目,开源了中文LLaMA-2基座模型和Alpaca-2指令精调大模型。这些模型在原版Llama-2的基础上扩充并优化了中文词表,使用了大规模中文数据进行增量预训练,进一步提升了中文基础语义和指令理解能力,相比一代相关模型获得了显著性能提升。相关模型支持FlashAttention-2训练。标准版模型支持4K上下文长度,长上下文版模型支持16K上下文长度,并可通过NTK方法最高扩展至24K+上下文长度。
本项目主要内容
>> 针对Llama-2模型扩充了新版中文词表,开源了中文LLaMA-2和Alpaca-2大模型;
>>开源了预训练脚本、指令精调脚本,用户可根据需要进一步训练模型;
>>使用个人电脑的CPU/GPU快速在本地进行大模型量化和部署体验;
>>支持transformers, llama.cpp, text-generation-webui, LangChain, privateGPT, vLLM等LLaMA生态;
目录
LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca-4月17日版》翻译与解读
LLMs:《Efficient And Effective Text Encoding For Chinese Llama And Alpaca—6月15日版本》翻译与解读
LLMs之LLaMA2:LLaMA2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略
LLMs:Chinese-LLaMA-Alpaca的简介(扩充中文词表+增量预训练+指令精调)、安装、案例实战应用之详细攻略
LLMs:在单机CPU+Windows系统上实现中文LLaMA算法(基于Chinese-LLaMA-Alpaca)进行模型部署(llama.cpp)且实现模型推理全流程步骤的图文教程(非常详细)
LLMs:Chinese-LLaMA-Alpaca-2(基于deepspeed框架)的简介、安装、案例实战应用之详细攻略
LLMs之LLaMA2:基于LocalGPT利用LLaMA2模型实现本地化的知识库(Chroma)并与本地文档(基于langchain生成嵌入)进行对话问答图文教程+代码详解之详细攻略
(1)、LoRA模型无法单独使用,必须与原版Llama-2进行合并才能转为完整模型
2.1、预训练:基于deepspeed框架+Llama-2增量训练+采用120G纯文本+ 启用FlashAttention-2,默认fp16训练
(2)、支持的训练模式:基于原版LLaMA-2训练中文LLaMA-2 LoRA、基于中文LLaMA-2/Alpaca-2继续预训练(在新的LoRA上)
(3)、关于显存占用:只训练LoRA参数、减小block_size、开启gradient_checkpointing(但会降速)
2.2、指令精调:基于deepspeed框架+Chinese-LLaMA-2进行指令精调+500万条(Alpaca格式的json文件)+ 启用FlashAttention-2,默认fp16训练
(2)、支持的训练模模式:基于Chinese-LLaMA-2 LoRA进行指令精调、基于Chinese-LLaMA-2训练全新的指令精调LoRA权重
(3)、关于显存占用:只训练LoRA参数(单卡21G)、减小max_seq_length
T2、Transformers:原生transformers推理接口
T4、仿OpenAI API调用:仿OpenAI API接口的服务器Demo
T5、text-generation-webui:前端Web UI界面的部署方式
T7、privateGPT:基于LangChain的多文档本地问答框架
https://yunyaniu.blog.csdn.net/article/details/131318974
LLMs之LLaMA2:LLaMA2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略_一个处女座的程序猿的博客-CSDN博客
https://yunyaniu.blog.csdn.net/article/details/130397623
https://yunyaniu.blog.csdn.net/article/details/131319010
https://yunyaniu.blog.csdn.net/article/details/131526139
LLMs:Chinese-LLaMA-Alpaca-2(基于deepspeed框架)的简介、安装、案例实战应用之详细攻略_一个处女座的程序猿的博客-CSDN博客
本项目推出了基于Llama-2的中文LLaMA-2以及Alpaca-2系列模型,相比一期项目其主要特点如下:
经过优化的中文词表 | 在一期项目中,我们针对一代LLaMA模型的32K词表扩展了中文字词(LLaMA:49953,Alpaca:49954) 在本项目中,我们重新设计了新词表(大小:55296),进一步提升了中文字词的覆盖程度,同时统一了LLaMA/Alpaca的词表,避免了因混用词表带来的问题,以期进一步提升模型对中文文本的编解码效率 |
基于FlashAttention-2的高效注意力 | FlashAttention-2是高效注意力机制的一种实现,相比其一代技术具有更快的速度和更优化的显存占用; 当上下文长度更长时,为了避免显存爆炸式的增长,使用此类高效注意力技术尤为重要; 本项目的所有模型均使用了FlashAttention-2技术进行训练; |
基于PI和NTK的超长上下文扩展技术 | 在一期项目中,我们实现了基于NTK的上下文扩展技术,可在不继续训练模型的情况下支持更长的上下文; 基于位置插值PI和NTK等方法推出了长上下文版模型,支持16K上下文,并可通过NTK方法最高扩展至24K-32K; 进一步设计了方便的自适应经验公式,无需针对不同的上下文长度设置NTK超参,降低了使用难度; |
简化的中英双语系统提示语 | 在一期项目中,中文Alpaca系列模型使用了Stanford Alpaca的指令模板和系统提示语; 初步实验发现,Llama-2-Chat系列模型的默认系统提示语未能带来统计显著的性能提升,且其内容过于冗长; 本项目中的Alpaca-2系列模型简化了系统提示语,同时遵循Llama-2-Chat指令模板,以便更好地适配相关生态; |
地址 | |
时间 | 2023年07月31日 |
作者 | 哈工大讯飞联合实验室 |
基座模型:Chinese-LLaMA-2-7B, Chinese-LLaMA-2-13B
聊天模型:Chinese-Alpaca-2-7B, Chinese-Alpaca-2-13B
长上下文模型:Chinese-LLaMA-2-7B-16K, Chinese-LLaMA-2-13B-16K, Chinese-Alpaca-2-7B-16K, Chinese-Alpaca-2-13B-16K
为了评测相关模型的效果,本项目分别进行了生成效果评测和客观效果评测(NLU类),从不同角度对大模型进行评估。需要注意的是,综合评估大模型能力仍然是亟待解决的重要课题,单个数据集的结果并不能综合评估模型性能。推荐用户在自己关注的任务上进行测试,选择适配相关任务的模型。
为了更加直观地了解模型的生成效果,本项目仿照Fastchat Chatbot Arena推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。题库来自于一期项目人工制作的200题,以及在此基础上额外增加的题目。生成回复具有随机性,受解码超参、随机种子等因素影响,因此相关评测并非绝对严谨,结果仅供晾晒参考,欢迎自行体验。部分生成样例请查看examples目录。
⚔️ 模型竞技场:http://llm-arena.ymcui.com
系统 | 对战胜率(无平局) ↓ | Elo评分 |
---|---|---|
Chinese-Alpaca-2-13B-16K | 86.84% | 1580 |
Chinese-Alpaca-2-13B | 72.01% | 1579 |
Chinese-Alpaca-Pro-33B | 64.87% | 1548 |
Chinese-Alpaca-2-7B | 64.11% | 1572 |
Chinese-Alpaca-Pro-7B | 62.05% | 1500 |
Chinese-Alpaca-2-7B-16K | 61.67% | 1540 |
Chinese-Alpaca-Pro-13B | 61.26% | 1567 |
Chinese-Alpaca-Plus-33B | 31.29% | 1401 |
Chinese-Alpaca-Plus-13B | 23.43% | 1329 |
Chinese-Alpaca-Plus-7B | 20.92% | 1379 |
Note
以上结果截至2023年9月1日。最新结果请进入⚔️竞技场进行查看。
C-Eval是一个全面的中文基础模型评估套件,其中验证集和测试集分别包含1.3K和12.3K个选择题,涵盖52个学科。实验结果以“zero-shot / 5-shot”进行呈现。C-Eval推理代码请参考本项目:https://www.wpsshop.cn/w/盐析白兔/article/detail/131323
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。