当前位置:   article > 正文

神经网络中隐藏层的作用,深度神经网络隐藏层数_visible layers nerve cell

visible layers nerve cell

神经网络隐藏层是什么

一个神经网络包括有多个神经元“层”,输入层、隐藏层及输出层。输入层负责接收输入及分发到隐藏层(因为用户看不见这些层,所以见做隐藏层)。

这些隐藏层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。

谷歌人工智能写作项目:小发猫

神经网络中各个隐藏层能提取出和人类看到的一样的特征?

关于循环神经网络RNN,隐藏层是怎么来的?

RNN的隐藏层也可以叫循环核,简单来说循环核循环的次数叫时间步,循环核的个数就是隐藏层层数。

循环核可以有两个输入(来自样本的输入x、来自上一时间步的激活值a)和两个输出(输出至下一层的激活值h、输出至本循环核下一时间步的激活值a),输入和输出的形式有很多变化,题主想了解可以上B站搜索“吴恩达深度学习”其中第五课是专门对RNN及其拓展进行的讲解,通俗易懂。

B站链接:网页链接参考资料:网页链接。

神经网络(深度学习)的几个基础概念

从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。

而深度学习中最著名的卷积神经网络CNN࿰

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/314014
推荐阅读
相关标签
  

闽ICP备14008679号