赞
踩
最近在研究整个SLAM框架的改进处,想着能不能从Cartographer中找到一些亮点可以用于参考。所以这一篇博客希望能够梳理好Cartographer前后端优化,并从中得到一些启发。carto整体是graph-based框架,前端是scan-map匹配,后端是SPA优化。前端又分为CSM+Ceres两个部分,完成匹配后则会进入子图生成维护中。在子图维护以及优化后放入后端优化,完成全局地图优化和回环检测。下图来自cartographer 代码分析
前端负责数据的初步处理、局部地图的构建以及与即时定位相关的工作。主要流程包括:
子图在前端和后端之间起到重要的连接作用。它的主要流程如下:
后端负责全局的地图优化、回环检测和地图更新。主要流程包括:
Carto先用了CSM做粗匹配,然后用Ceres做精匹配,并使用了分支定界的方法来加速。
由于Ceres scan matcher这是一个实时的局部优化,需要一个好的初始位姿估计。所以需要real time CSM把位姿估计器传来的预测值更新为一个好的初值,如果没有real time CSM
,就还用位姿估计器传来的预测值作初值。Ceres Scan Matcher以初值作为先验,并找到最佳的点,该点就是通过scan match获得的在子地图中的位置,实现方式是 interpolating the submap and sub-pixel aligning the scan. 前端的两个scan matcher其实都是 scan to map 问题,让当前观测和已知环境最匹配。
CSM说白了就是穷举。我先对scan在map中的pose做个大致估计(例如通过里程计来预测),然后在这个pose周围穷举所有的pose,找到匹配最好的那个。
详细可以参考:前端 3. Real Time Correlative Scan Matcher。相关代码可以参考CSM快速匹配与多分辨率匹配代码实现。
在通过real time CSM或者位姿估计器传来的预测值作为初值后,然后需要通过 ceres scan matcher 优化才能插入到子图中。前端的两个scan matcher其实都是 scan to map 问题,让当前观测和已知环境最匹配。ceres匹配对初值要求相当高,匹配后的结果会考虑其与初始位置偏差进行权重化,说明 cartographer认为其匹配后的值应该与初值相差不大。 Ceres扫描匹配器优化包含了三个残差项:点云与grid的匹配残差、位置(平移)残差、角度(旋转)残差。位置、角度两残差顶多就是对匹配位姿的约束,防止点云匹配的结果和初值差太多,真正的扫描匹配的主角是点云匹配残差。
详细可以参考:前端 4. Ceres scan matcher,代码可以参考cartographer代码学习笔记-CeresScanMatcher2D
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。