当前位置:   article > 正文

LaTeX常用数学符号总结_latex数学符号

latex数学符号

本文汇总了在使用LaTeX中常用的数学符号,相关下载资源为:139分钟学会Latex(免积分下载)。


1. 希腊字母

LaTeX中,即使只是单个数学符号或数字,也要使用’$$'表示,例如数字 7 7 7应写成 $ 7 $,大写希腊字母只需要首字母大写即可。

希腊字母LaTeX语法希腊字母LaTeX语法
α \alpha α\alpha ξ \xi ξ, Ξ \Xi Ξ\xi, \Xi
β \beta β\beta o o oo
γ \gamma γ, Γ \Gamma Γ\gamma, \Gamma π \pi π, Π \Pi Π\pi, \Pi
δ \delta δ, Δ \Delta Δ\delta, \Delta ϖ \varpi ϖ\varpi
ϵ \epsilon ϵ\epsilon ρ \rho ρ\rho
ε \varepsilon ε\varepsilon ϱ \varrho ϱ\varrho
ζ \zeta ζ\zeta σ \sigma σ, Σ \Sigma Σ\sigma, \Sigma
η \eta η\eta ς \varsigma ς\varsigma
θ \theta θ, Θ \Theta Θ\theta, \Theta τ \tau τ\tau
ϑ \vartheta ϑ\vartheta υ \upsilon υ, Υ \Upsilon Υ\upsilon, \Upsilon
ι \iota ι\iota ϕ \phi ϕ, Φ \Phi Φ\phi, \Phi
κ \kappa κ\kappa φ \varphi φ\varphi
λ \lambda λ, Λ \Lambda Λ\lambda, \Lambda χ \chi χ\chi
μ \mu μ\mu ψ \psi ψ, Ψ \Psi Ψ\psi, \Psi
ν \nu ν\nu ω \omega ω, Ω \Omega Ω\omega, \Omega

2. 集合运算符

集合符号LaTeX语法集合符号LaTeX语法
∪ \cup \cup ∩ \cap \cap
⊂ \subset , ⊄ \not\subset \subset , \not\subset ⊆ \subseteq \subseteq
⊃ \supset \supset ⊇ \supseteq \supseteq
∈ \in \in ∉ \notin /\notin
R \mathbb{R} R\mathbb{R} Z \mathbb{Z} Z\mathbb{Z}
Q \mathbb{Q} Q\mathbb{Q} N \mathbb{N} N\mathbb{N}
C \mathbb{C} C\mathbb{C} ∅ \varnothing \varnothing
∅ \emptyset \emptyset ℵ \aleph \aleph
∀ \forall \forall ∃ \exists \exists
¬ \neg ¬\neg ∨ \vee \vee
∧ \wedge \wedge ⊢ \vdash \vdash
⊨ \models \models ∖ \setminus \setminus
A c A^{\mathsf{c}} AcA^{\mathsf{c}} A ‾ \overline{A} A\overline{A}

3. 数学运算符

运算符号LaTeX语法运算符号LaTeX语法运算符号LaTeX语法
< < << ∠ \angle \angle ⋅ \cdot \cdot
≤ \leq \leq ∡ \measuredangle \measuredangle ± \pm ±\pm
> > >> ℓ \ell \ell ∓ \mp \mp
≥ \geq \geq ∥ \parallel \parallel × \times ×\times
≠ \neq =\neq 4 5 ∘ 45^{\circ} 4545^{\circ} ÷ \div ÷\div
≪ \ll ll ≅ \cong \cong ∗ \ast \ast
≫ \gg \gg ≆ \ncong \ncong ∣ \mid \mid
≈ \approx \approx ∼ \sim \sim ∤ \nmid \nmid
≍ \asymp \asymp ≃ \simeq \simeq n ! n! n!n!
≡ \equiv \equiv ≁ \nsim \nsim ∂ \partial \partial
≺ \prec \prec ⊕ \oplus \oplus ∇ \nabla \nabla
⪯ \preceq \preceq ⊖ \ominus \ominus ℏ \hbar \hbar
≻ \succ \succ ⊙ \odot \odot ∘ \circ \circ
⪰ \succeq \succeq ⊗ \otimes \otimes ⋆ \star \star
∝ \propto \propto ⊘ \oslash \oslash √ \surd \surd
≐ \doteq \doteq ↾ \upharpoonright \upharpoonright ✓ \checkmark \checkmark

4. 三角符号、指数符号、对数符号

运算符号LaTeX语法运算符号LaTeX语法运算符号LaTeX语法
sin ⁡ \sin sin\sin sinh ⁡ \sinh sinh\sinh arcsin ⁡ \arcsin arcsin\arcsin
cos ⁡ \cos cos\cos cosh ⁡ \cosh cosh\cosh arccos ⁡ \arccos arccos\arccos
tan ⁡ \tan tan\tan tanh ⁡ \tanh tanh\tanh arctan ⁡ \arctan arctan\arctan
sec ⁡ \sec sec\sec coth ⁡ \coth coth\coth min ⁡ \min min\min
csc ⁡ \csc csc\csc det ⁡ \det det\det max ⁡ \max max\max
cot ⁡ \cot cot\cot dim ⁡ \dim dim\dim inf ⁡ \inf inf\inf
exp ⁡ \exp exp\exp ker ⁡ \ker ker\ker sup ⁡ \sup sup\sup
log ⁡ \log log\log deg ⁡ \deg deg\deg lim inf ⁡ \liminf liminf\liminf
ln ⁡ \ln ln\ln arg ⁡ \arg arg\arg lim sup ⁡ \limsup limsup\limsup
lg ⁡ \lg lg\lg gcd ⁡ \gcd gcd\gcd lim ⁡ \lim lim\lim

5. 积分、微分、偏微分

一重积分

$$ 
\int_{x=0}^3 x^2\ = 9 
$$
  • 1
  • 2
  • 3

∫ x = 0 3 x 2   = 9 \int_{x=0}^3 x^2\ =9 x=03x2 =9

二重积分

$$ 
\iint dxdy = S 
$$
  • 1
  • 2
  • 3

∬ d x d y = S \iint dxdy = S dxdy=S

三重积分

$$ 
\iiint dxdydz = V 
$$
  • 1
  • 2
  • 3

∭ d x d y d z = V \iiint dxdydz = V dxdydz=V

一阶微分方程

$$ 
\frac{dy}{dx}+P(x)y = Q(x)
\\ \left. \frac{{\rm d}y}{{\rm d}x} \right|_{x=0} = 3x+1 
$$
  • 1
  • 2
  • 3
  • 4

d y d x + P ( x ) y = Q ( x ) d y d x ∣ x = 0 = 3 x + 1 \frac{dy}{dx}+P(x)y = Q(x) \\ \left. \frac{{\rm d}y}{{\rm d}x} \right|_{x=0} = 3x+1 dxdy+P(x)y=Q(x)dxdyx=0=3x+1

二阶微分方程

$$
y''+py'+qy=f(x)
\\\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=f(x)
$$
  • 1
  • 2
  • 3
  • 4

y ′ ′ + p y ′ + q y = f ( x ) d 2 y d x 2 + p d y d x + q y = f ( x ) y''+py'+qy=f(x) \\\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=f(x) y+py+qy=f(x)dx2d2y+pdxdy+qy=f(x)

偏微分方程

$$
\frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}\right)
$$
  • 1
  • 2
  • 3

∂ u ∂ t = h 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}\right) tu=h2(x22u+y22u+z22u)


6. 矩阵和行列式

单位矩阵

$$
\begin{bmatrix}
1&0&0 \\
0&1&0 \\
0&0&1 \\
\end{bmatrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

[ 1 0 0 0 1 0 0 0 1 ] [100010001] 100010001

m × n m \times n m×n矩阵

$$
A=\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{bmatrix}$$
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] A=[a11a12a1na21a22a2nam1am2amn] A=a11a21am1a12a22am2a1na2namn

行列式

$$
D=\begin{vmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{vmatrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ∣ D=|a11a12a1na21a22a2nam1am2amn| D=a11a21am1a12a22am2a1na2namn


7. 基本函数、分段函数

基本函数

$$
f(n)=\sum_{i=1}^{n}{n*(n+1)}
$$
  • 1
  • 2
  • 3

f ( n ) = ∑ i = 1 n n ∗ ( n + 1 ) f(n)=\sum_{i=1}^{n}{n*(n+1)} f(n)=i=1nn(n+1)

$$
x^{y}=(1+{\rm e}^x)^{-2xy}
$$ 
  • 1
  • 2
  • 3

x y = ( 1 + e x ) − 2 x y x^{y}=(1+{\rm e}^x)^{-2xy} xy=(1+ex)2xy

$$
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.
$$
  • 1
  • 2
  • 3

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

$$
y(x)=x^3+2x^2+x+1
$$ 
  • 1
  • 2
  • 3

y ( x ) = x 3 + 2 x 2 + x + 1 y(x)=x^3+2x^2+x+1 y(x)=x3+2x2+x+1

分段函数

$$
f_n =\begin {cases}
a  &\text {if $n=0$}  \\
r \cdot f_{n -1} &\text {else}
\end{cases}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

f n = { a if  n = 0 r ⋅ f n − 1 else f_n =\begin {cases} a &\text {if $n=0$} \\ r \cdot f_{n -1} &\text {else} \end{cases} fn={arfn1if n=0else
齐次方程

$$
\left \{ 
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\ 
a_2x+b_2y+c_2z=d_2 \\ 
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left \{ a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3 \right. a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3


8. 其它符号

数学符号LaTeX语法数学符号LaTeX语法数学符号LaTeX语法
2 \sqrt{2} 2 \sqrt{2} 3 n \sqrt[n]{3} n3 \sqrt[n]{3} f ′ f' ff’
f ′ ′ f'' ff’’ Σ ∗ \Sigma^{*} Σ\Sigma^{*} a ˙ \dot{a} a˙\dot{a}
a ¨ \ddot{a} a¨\ddot{a} x ^ \hat{x} x^\hat{x} x ~ \tilde{x} x~\tilde{x}
x ˉ \bar{x} xˉ\bar{x} x ⃗ \vec{x} x \vec{x} ∞ \infty \infty
→ \rightarrow \rightarrow ↦ \mapsto \mapsto ↛ \nrightarrow \nrightarrow
⟼ \longmapsto \longmapsto ⟶ \longrightarrow \longrightarrow ← \leftarrow \leftarrow
⇒ \Rightarrow \Rightarrow ↔ \leftrightarrow \leftrightarrow ↓ \downarrow \downarrow
↑ \uparrow \uparrow ↕ \updownarrow \updownarrow 2 3 \frac{2}{3} 32\frac{2}{3}
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/106288
推荐阅读
相关标签
  

闽ICP备14008679号