欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。
技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。
关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学习)学习笔记整理系列”中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助。
- Lenet,1986年
- Alexnet,2012年
- GoogleNet,2014年
- VGG,2014年
- Deep Residual Learning,2015年
Lenet
就从Lenet说起,可以看下caffe中lenet的配置文件(点我),可以试着理解每一层的大小,和各种参数。由两个卷积层,两个池化层,以及两个全连接层组成。 卷积都是5*5的模板,stride=1,池化都是MAX。下图是一个类似的结构,可以帮助理解层次结构&