赞
踩
雾天车辆行人检测在多种场景中扮演着至关重要的角色。以下是其作用的几个主要方面:
- 安全性提升:雾天能见度低,视线受阻,这使得驾驶者和行人在道路上的感知能力大大降低。通过车辆行人检测技术,可以在雾天条件下及时发现道路上的其他交通参与者,从而提前做出反应,避免潜在的危险,提升驾驶和行走的安全性。
- 辅助驾驶:在雾天,驾驶者往往难以准确判断前方道路的情况,包括其他车辆和行人的位置、速度和方向等。车辆行人检测技术可以提供这些关键信息,帮助驾驶者更好地了解道路状况,从而做出更准确的驾驶决策。
- 交通效率提升:在雾天条件下,交通往往容易受到影响,出现拥堵、事故等情况。通过车辆行人检测技术,可以及时发现并处理这些问题,从而保持交通的顺畅,提升交通效率。
- 自动驾驶技术的重要组成部分:随着自动驾驶技术的不断发展,车辆行人检测技术成为了其中的重要组成部分。在自动驾驶系统中,车辆需要能够准确感知周围环境的变化,包括其他车辆和行人的位置、速度和方向等。而雾天车辆行人检测技术可以帮助自动驾驶系统更好地应对恶劣天气条件,提高系统的可靠性和稳定性。
总的来说,雾天车辆行人检测技术在提升道路安全、辅助驾驶、提高交通效率以及推动自动驾驶技术的发展等方面都发挥着重要作用。
本文介绍了基于深度学习yolov8的雾天行人车辆检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
检测结果如下图:
yolov8官方文档:主页 - Ultralytics YOLOv8 文档
安装部分参考:官方安装教程
根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。
对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):
打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:
打开pytorch官网,选择CPU版本安装pytorch,如下图:
在命令行使用如下命令安装:
pip install ultralytics
本项目的数据集为RTTS数据集,RTTS 数据集源自 RESIDE-β 数据集,包含 4322 张真实雾天图片,作为项目训练集,另外有 100 张真实场景图片作为验证集。
该数据集包含5各类别:
person/ car/ bus/ bicycle/ motorbike
数据集图片示例如下图所示:
为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:rtts-yolov8数据集
创建数据集配置文件ug.yaml,内容如下(将path路径替换为自己的数据集路径):
- # Ultralytics YOLO 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/175887推荐阅读
相关标签
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。