当前位置:   article > 正文

【数据分析】什么是数据分析? 分析和管理数据以做出决策_开发公式和统计方法来处理数据以获得模式和趋势。是数据分析还是管理

开发公式和统计方法来处理数据以获得模式和趋势。是数据分析还是管理

数据分析是一门专注于从数据中提取洞察力的学科,包括数据的分析、收集、组织和存储,以及用于执行此操作的工具和技术

数据分析定义

数据分析是一门专注于从数据中提取洞察力的学科。它包括数据分析和管理的过程、工具和技术,包括数据的收集、组织和存储。数据分析的主要目的是对数据应用统计分析和技术来发现趋势和解决问题。作为分析和塑造业务流程以及改进决策和业务成果的一种手段,数据分析在企业中变得越来越重要。

数据分析从一系列学科(包括计算机编程、数学和统计学)中汲取知识,对数据进行分析,以描述、预测和提高性能。为了确保进行稳健的分析,数据分析团队利用了一系列数据管理技术,包括数据挖掘、数据清理、数据转换、数据建模等。

数据分析(Data analytics)与数据分析(data analysis)

虽然术语数据分析和数据分析经常互换使用,但数据分析是数据分析的一个子集,涉及检查、清理、转换和建模数据以得出结论。数据分析包括用于执行数据分析的工具和技术。

数据分析与数据科学

数据分析和数据科学密切相关。数据分析是数据科学的一个组成部分,用于了解组织的数据是什么样的。通常,数据分析的输出是报告和可视化。数据科学利用分析的输出来研究和解决问题。

数据分析和数据科学之间的差异通常被视为时间尺度之一。数据分析描述现实的当前或历史状态,而数据科学使用该数据来预测和/或理解未来。

数据分析与业务分析

业务分析是数据分析的另一个子集。业务分析使用数据分析技术(包括数据挖掘、统计分析和预测建模)来推动更好的业务决策。Gartner 将业务分析定义为“用于构建分析模型和模拟以创建场景、了解现实和预测未来状态的解决方案”。

数据分析的类型

有四种类型的分析:

  • 描述性分析:发生了什么以及现在正在发生什么?描述性分析使用来自多个来源的历史和当前数据,通过识别趋势和模式来描述当前状态。在业务分析中,这是商业智能 (BI) 的范围。

  • 诊断分析:为什么会这样?诊断分析使用数据(通常通过描述性分析生成)来发现过去表现的因素或原因。

  • 预测分析:未来可能发生什么?预测分析将统计建模、预测和机器学习等技术应用于描述性和诊断分析的输出,以预测未来的结果。预测分析通常被认为是一种“高级分析”,并且经常依赖于机器学习和/或深度学习。

  • 规范性分析:我们需要做什么?规范性分析是一种高级分析,涉及应用测试和其他技术来推荐可实现预期结果的特定解决方案。在商业中,预测分析使用机器学习、商业规则和算法。

数据分析方法和技术

数据分析师使用多种方法和技术来分析数据。根据 CareerFoundry 的执行编辑 Emily Stevens 的说法,最受欢迎的七个包括:

  • 回归分析:回归分析是一组统计过程,用于估计变量之间的关系,以确定一个或多个变量的变化如何影响另一个变量。例如,社交媒体支出如何影响销售?

  • 蒙特卡罗模拟:根据 Investopedia 的说法,“蒙特卡罗模拟用于模拟由于随机变量的干预而无法轻易预测的过程中不同结果的概率。”它经常用于风险分析。

  • 因子分析:因子分析是一种统计方法,用于获取海量数据集并将其缩减为更小、更易于管理的数据集。这具有经常发现隐藏模式的额外好处。在商业环境中,因子分析通常用于探索客户忠诚度等问题。

  • 群组分析:群组分析用于将数据集分解为具有共同特征的组或群组,以进行分析。这通常用于了解客户细分。

  • 聚类分析:StatisticsSolutions 将聚类分析定义为“用于将对象或案例分类为称为聚类的相关组的一类技术”。它可以用来揭示数据中的结构——例如,保险公司可能会使用聚类分析来调查为什么某些地点与特定的保险索赔相关联。

  • 时间序列分析:StatisticsSolutions 将时间序列分析定义为“一种处理时间序列数据或趋势分析的统计技术。时间序列数据是指数据处于一系列特定的时间段或间隔中。时间序列分析可用于识别随时间变化的趋势和周期,例如每周的销售数字。它经常用于经济和销售预测。

  • 情感分析:情感分析使用自然语言处理、文本分析、计算语言学等工具来理解数据中表达的情感。前六种方法旨在分析定量数据(可测量的数据),而情绪分析旨在通过将定性数据组织成主题来对其进行解释和分类。它通常用于了解客户对品牌、产品或服务的感受。

数据分析示例

所有行业的组织都在利用数据分析来改善运营、增加收入并促进数字化转型。以下是三个例子:

  • La-Z-Boy 使用数据分析来改善运营:国际家具零售商 La-Z-Boy 使用分析来改善 20 个部门的运营,包括人力资源、财务、供应链和销售。分析帮助公司管理定价、SKU 性能、保修、运输和其他信息,以及预测库存水平。

  • 预测分析帮助欧文斯科宁开发涡轮叶片:制造商欧文斯科宁在其卓越分析中心的帮助下,使用预测分析来简化测试用于制造风力涡轮叶片玻璃织物的粘合剂的过程。分析帮助公司将任何给定新材料的测试时间从 10 天减少到大约两个小时。

  • Kaiser Permanente 通过分析减少等待时间:自 2015 年以来,Kaiser Permanente 一直在使用分析、机器学习和 AI 的组合来全面检查其在美国的 39 家医院和 700 多个医疗办公室的数据操作。它使用分析来更好地预测并解决潜在的瓶颈,使其能够在提高日常运营效率的同时提供更好的患者护理。

数据分析工资

根据 PayScale 的数据,以下是与数据分析相关的一些最受欢迎的职位以及每个职位的平均工资。

  • 分析经理:$68K-$127K

  • 业务分析师:$46K-$82K

  • 业务分析师,IT:$50K-$98K

  • 商业智能分析师:$50K-$95K

  • 数据分析师:$43K-$85K

  • 市场研究分析师:$41K-$75K

  • 运营研究分析师:49K-122K 美元

  • 定量分析师:$58K-$131K

  • 高级业务分析师:$63K-$115K

  • 统计学家:$50K-$108K

本文:什么是数据分析? 分析和管理数据以做出决策icon-default.png?t=MBR7https://cioctocdo.com/what-data-analytics-analyzing-and-managing-data-decisions

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/179527
推荐阅读
相关标签
  

闽ICP备14008679号