赞
踩
先附上官方源码地址:GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection
有的网友可能没有梯子,比较难访问,微智启工作室下载好了,放到蓝奏云方便下载:
yolov10源码(蓝奏云):
yolov10n.pt的模型:yolov10n.zip - 蓝奏云
yolov10s.pt模型:yolov10s.zip - 蓝奏云
据说是清华大学发布的版本,看来一下基本是在yolov8的基础上改进的,只能表示yolov9还没看多少次,yolov10就出来了,根本就跟不上!
这更新速度没谁了!
看来目录结构,以为跟yolov8一样,所以很多方法都按照yolov8来,结果报错了:
- Traceback (most recent call last):
- File "G:\down\yolov10-main\yolov10-main\wzq.py", line 13, in <module>
- model.predict(r"G:\down\yolov10-main\yolov10-main\ultralytics\assets\bus.jpg") #测试图片文件夹,并且设置保存True
- File "G:\down\yolov10-main\yolov10-main\ultralytics\engine\model.py", line 441, in predict
- return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
- File "G:\down\yolov10-main\yolov10-main\ultralytics\engine\predictor.py", line 168, in __call__
- return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
- File "E:\software\anaconda\envs\yolo10\lib\site-packages\torch\utils\_contextlib.py", line 35, in generator_context
- response = gen.send(None)
- File "G:\down\yolov10-main\yolov10-main\ultralytics\engine\predictor.py", line 255, in stream_inference
- self.results = self.postprocess(preds, im, im0s)
- File "G:\down\yolov10-main\yolov10-main\ultralytics\models\yolo\detect\predict.py", line 25, in postprocess
- preds = ops.non_max_suppression(
- File "G:\down\yolov10-main\yolov10-main\ultralytics\utils\ops.py", line 216, in non_max_suppression
- bs = prediction.shape[0] # batch size
- AttributeError: 'dict' object has no attribute 'shape'
还是老实的按照官方文档来操作。
如需远程安装yolov10环境,技术客服:3447362049
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。