赞
踩
MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测。基于贝叶斯(bayes)优化长短期神经网络的回归预测,BO-LSTM/Bayes-LSTM回归预测预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2020b及以上。
BO-LSTM(贝叶斯优化LSTM)是一种结合了贝叶斯优化和长短期神经网络(LSTM)的方法。
长短期神经网络(LSTM)是循环神经网络(RNN)的一种变体,具有比传统循环神经网络更强大的建模能力。
贝叶斯优化是一种用于优化问题的方法,它能够在未知的目标函数上进行采样,并根据已有的样本调整采样的位置。这种方法可以帮助我们在搜索空间中高效地找到最优解。
BO-LSTM的基本思想是使用贝叶斯优化来自动调整GRU模型的超参数,以获得更好的预测性能。贝叶斯优化算法根据已有的模型性能样本,选择下一个超参数配置进行评估,逐步搜索超参数空间,并利用贝叶斯推断方法更新超参数的概率分布。通过这种方式,BO-LSTM可以在相对较少的模型训练迭代次数内找到更好的超参数配置,从而提高预测的准确性。
%% 优化算法参数设置 %参数取值上界(学习率,隐藏层节点,正则化系数) %% 贝叶斯优化参数范围 optimVars = [ optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer') optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log') optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')]; %% 创建网络架构 % 输入特征维度 numFeatures = f_; % 输出特征维度 numResponses = 1; FiltZise = 10; % 创建"LSTM"模型 layers = [... % 输入特征 sequenceInputLayer([numFeatures 1 1],'Name','input') sequenceFoldingLayer('Name','fold') % 特征学习 dropoutLayer(0.25,'Name','drop3') % 全连接层 fullyConnectedLayer(numResponses,'Name','fc') regressionLayer('Name','output') ]; layers = layerGraph(layers); layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize'); % 批处理样本 MiniBatchSize =128; % 最大迭代次数 MaxEpochs = 500; options = trainingOptions( 'adam', ... 'MaxEpochs',500, ... 'GradientThreshold',1, ... 'InitialLearnRate',optVars.InitialLearnRate, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropPeriod',400, ... 'LearnRateDropFactor',0.2, ... 'L2Regularization',optVars.L2Regularization,... 'Verbose',false, ... 'Plots','none'); %% 训练混合网络 net = trainNetwork(XrTrain,YrTrain,layers,options);
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。