当前位置:   article > 正文

【Python百宝箱】从传感器到云端:深度解析Python在物联网中的多面应用_python 物联网 传感器

python 物联网 传感器
	- * [1. MQTT](#1_MQTT_13)
		* + [1.1 概述](#11__15)
			+ [1.2 特点与优势](#12__19)
			+ [1.3 MQTT在物联网中的应用](#13_MQTT_23)
			+ [1.4 MQTT协议质量等级](#14_MQTT_46)
			+ [1.5 使用Last Will和Retained标志](#15_Last_WillRetained_103)
	- [2. Adafruit CircuitPython](#2_Adafruit_CircuitPython_152)
	- * + [2.1 CircuitPython简介](#21_CircuitPython_154)
			+ [2.2 物联网项目中的应用](#22__158)
			+ [2.3 Adafruit IO与CircuitPython的集成](#23_Adafruit_IOCircuitPython_188)
			+ [2.4 CircuitPython与物联网传感器集成](#24_CircuitPython_219)
	- [3. CoAP(Constrained Application Protocol)](#3_CoAPConstrained_Application_Protocol_252)
	- * + [3.1 CoAP协议概述](#31_CoAP_254)
			+ [3.2 CoAP与MQTT的比较](#32_CoAPMQTT_258)
			+ [3.3 在物联网中使用CoAP的场景](#33_CoAP_262)
			+ [3.4 CoAP的观察(Observe)机制](#34_CoAPObserve_284)
			+ [3.5 CoAP的分块传输](#35_CoAP_325)
	- [4. Micropython](#4_Micropython_352)
	- * + [4.1 Micropython概述](#41_Micropython_354)
			+ [4.2 在嵌入式设备上的应用](#42__358)
			+ [4.3 与CircuitPython的区别与联系](#43_CircuitPython_373)
			+ [4.4 Micropython与物联网协议的集成](#44_Micropython_377)
			+ [4.5 Micropython与物联网云服务的整合](#45_Micropython_400)
	- [5. Blynk](#5_Blynk_436)
	- * + [5.1 Blynk平台简介](#51_Blynk_438)
			+ [5.2 使用Blynk进行远程物联网设备控制](#52_Blynk_442)
			+ [5.3 Blynk与其他物联网平台的集成](#53_Blynk_465)
			+ [5.4 Blynk与MQTT的集成](#54_BlynkMQTT_469)
	- [6. Zerynth](#6_Zerynth_526)
	- * + [6.1 Zerynth的特点](#61_Zerynth_528)
			+ [6.2 在物联网中的应用场景](#62__532)
			+ [6.3 与其他物联网框架的比较](#63__555)
			+ [6.4 Zerynth与AWS IoT的集成](#64_ZerynthAWS_IoT_559)
			+ [6.5 Zerynth与LoRaWAN的集成](#65_ZerynthLoRaWAN_598)
	- [7. ThingSpeak](#7_ThingSpeak_625)
	- * + [7.1 ThingSpeak平台概述](#71_ThingSpeak_627)
			+ [7.2 数据可视化与物联网数据分析](#72__631)
			+ [7.3 与MQTT的整合](#73_MQTT_649)
			+ [7.4 ThingSpeak与MQTT的整合](#74_ThingSpeakMQTT_654)
			+ [7.5 ThingSpeak MATLAB Analysis](#75_ThingSpeak_MATLAB_Analysis_693)
	- [8. AWS IoT SDK for Python (Boto3)](#8_AWS_IoT_SDK_for_Python_Boto3_699)
	- * + [8.1 AWS IoT服务简介](#81_AWS_IoT_701)
			+ [8.2 使用Boto3进行AWS IoT设备管理](#82_Boto3AWS_IoT_705)
			+ [8.3 与Lambda函数的结合](#83_Lambda_721)
			+ [8.4 通过Boto3发布和订阅MQTT消息](#84_Boto3MQTT_725)
			+ [8.5 与AWS Lambda函数的触发](#85_AWS_Lambda_767)
	- [9. Particle](#9_Particle_814)
	- * + [9.1 Particle平台概述](#91_Particle_816)
			+ [9.2 物联网原型开发与测试](#92__820)
			+ [9.3 与Arduino的整合](#93_Arduino_835)
			+ [9.4 Particle云事件与Webhooks](#94_ParticleWebhooks_839)
			+ [9.5 Particle Mesh网络](#95_Particle_Mesh_864)
	- [10. LoRaWAN](#10_LoRaWAN_885)
	- * + [10.1 LoRaWAN技术概述](#101_LoRaWAN_887)
			+ [10.2 在长距离低功耗物联网中的应用](#102__891)
			+ [10.3 LoRaWAN与其他物联网协议的比较](#103_LoRaWAN_901)
			+ [10.4 LoRaWAN与The Things Network(TTN)的集成](#104_LoRaWANThe_Things_NetworkTTN_905)
+ [总结](#_951)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
物联网(IoT)
1. MQTT
1.1 概述

MQTT(Message Queuing Telemetry Transport)是一种轻量级、开放式、简单易用的协议,专门设计用于低带宽、高延迟或不稳定网络的物联网设备间通信。其基于发布-订阅模型,通过一个中间代理(broker)进行消息传递,实现设备间的异步通信。

1.2 特点与优势

MQTT的特点包括低能耗、可靠性高、支持多种消息负载类型等。优势在于其轻量级设计,使其适用于资源受限的物联网设备,同时提供可靠的消息传递机制。

1.3 MQTT在物联网中的应用
# 示例代码:使用Paho MQTT库进行Python中的MQTT通信

import paho.mqtt.client as mqtt

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")
    client.subscribe("iot/topic")

def on\_message(client, userdata, msg):
    print(f"Received message: {msg.payload.decode()} on topic {msg.topic}")

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect("mqtt.eclipse.org", 1883, 60)

client.loop_forever()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
1.4 MQTT协议质量等级

MQTT协议定义了三种消息发布质量等级(QoS级别):0、1和2。这些级别提供了不同程度的消息传递保证。

  • QoS 0(最多一次): 消息发布者将消息发送给代理,然后忘记它。代理不会确认消息是否已被传递给订阅者,也不会重试传递。
import paho.mqtt.client as mqtt

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")
    client.publish("iot/topic", "Hello, MQTT!", qos=0)

client = mqtt.Client()
client.on_connect = on_connect

client.connect("mqtt.eclipse.org", 1883, 60)

client.loop_forever()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • QoS 1(至少一次): 消息发布者将消息发送给代理,并要求代理传递消息至少一次。代理会确认消息是否已被成功传递,但如果确认丢失,消息可能会被多次传递。
import paho.mqtt.client as mqtt

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")
    client.publish("iot/topic", "Hello, MQTT!", qos=1)

client = mqtt.Client()
client.on_connect = on_connect

client.connect("mqtt.eclipse.org", 1883, 60)

client.loop_forever()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • QoS 2(只有一次): 消息发布者将消息发送给代理,并要求代理传递消息仅一次。代理通过两次握手确认消息的传递,确保消息仅被传递一次。
import paho.mqtt.client as mqtt

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")
    client.publish("iot/topic", "Hello, MQTT!", qos=2)

client = mqtt.Client()
client.on_connect = on_connect

client.connect("mqtt.eclipse.org", 1883, 60)

client.loop_forever()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

理解并选择适当的QoS级别对于确保消息的可靠传递至关重要,特别是在需要确保消息不会被丢失或重复的情况下。

1.5 使用Last Will和Retained标志

MQTT支持Last Will和Retained标志,用于在设备异常断开连接时发送"遗嘱"消息,并在新订阅者连接时获取最新消息。

  • Last Will: 在连接时,客户端可以指定一个"遗嘱"主题和消息,以便在其断开连接时向代理发送。这有助于及时检测设备的连接状态。
import paho.mqtt.client as mqtt

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")
    client.will_set("iot/status", payload="Device Offline", qos=1, retain=True)
    client.subscribe("iot/topic")
    
def on\_message(client, userdata, msg):
    print(f"Received message: {msg.payload.decode()} on topic {msg.topic}")

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect("mqtt.eclipse.org", 1883, 60)

client.loop_forever()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • Retained标志: 当发布者发布带有Retained标志的消息时,代理将保留该消息,以便在新订阅者连接时发送。这有助于新订阅者获取到最新的设备状态或信息。
import paho.mqtt.client as mqtt

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")
    client.publish("iot/status", payload="Device Online", qos=1, retain=True)
    client.subscribe("iot/topic")

def on\_message(client, userdata, msg):
    print(f"Received message: {msg.payload.decode()} on topic {msg.topic}")

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect("mqtt.eclipse.org", 1883, 60)

client.loop_forever()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

这些功能为在实际物联网应用中确保可靠通信提供了更多的选项。

2. Adafruit CircuitPython
2.1 CircuitPython简介

CircuitPython是Adafruit推出的一种用于开发微控制器的Python解释器。它简化了硬件交互,使得物联网项目的开发变得更加容易,特别适用于初学者和快速原型设计。

2.2 物联网项目中的应用
# 示例代码:使用Adafruit CircuitPython读取传感器数据并通过MQTT发送

import board
import busio
import adafruit_dht
import paho.mqtt.client as mqtt

dht = adafruit_dht.DHT22(board.D4)

def on\_connect(client, userdata, flags, rc):
    print(f"Connected with result code {rc}")

client = mqtt.Client()
client.on_connect = on_connect

client.connect("mqtt.eclipse.org", 1883, 60)

while True:
    try:
        temperature_c = dht.temperature
        humidity = dht.humidity

        client.publish("iot/sensor", f"Temperature: {temperature\_c}°C, Humidity: {humidity}%")
    except Exception as e:
        print(f"Error reading sensor: {e}")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
2.3 Adafruit IO与CircuitPython的集成

Adafruit IO是Adafruit提供的物联网云服务平台,与CircuitPython的集成可以实现设备数据的上传、监控和控制。以下是一个简单的示例,演示如何将传感器数据上传到Adafruit IO。

# 示例代码:使用Adafruit IO和CircuitPython上传传感器数据

import board
import busio
import adafruit_dht
from adafruit_io.adafruit_io import IO_HTTP, AdafruitIO_RequestError

dht = adafruit_dht.DHT22(board.D4)
ADAFRUIT_IO_USERNAME = "YourUsername"
ADAFRUIT_IO_KEY = "YourKey"
SENSOR_FEED_NAME = "temperature"

io = IO_HTTP(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY)

while True:
    try:
        temperature_c = dht.temperature
        humidity = dht.humidity

        print(f"Temperature: {temperature\_c}°C, Humidity: {humidity}%")

        io.send_data(SENSOR_FEED_NAME, temperature_c)
    except Exception as e:
        print(f"Error reading sensor: {e}")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
2.4 CircuitPython与物联网传感器集成

CircuitPython支持与各种传感器的简单集成,例如光线传感器、运动传感器等。以下是一个使用光线传感器的例子,将光线强度上传到Adafruit IO。

# 示例代码:使用Adafruit IO和CircuitPython上传光线传感器数据

import board
import busio
import adafruit_veml7700
from adafruit_io.adafruit_io import IO_HTTP, AdafruitIO_RequestError

i2c = busio.I2C(board.SCL, board.SDA)
veml7700 = adafruit_veml7700.VEML7700(i2c)

ADAFRUIT_IO_USERNAME = "YourUsername"
ADAFRUIT_IO_KEY = "YourKey"
SENSOR_FEED_NAME = "light\_intensity"

io = IO_HTTP(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY)

while True:
    try:
        light_intensity = veml7700.light

        print(f"Light Intensity: {light\_intensity} lux")

        io.send_data(SENSOR_FEED_NAME, light_intensity)
    except Exception as e:
        print(f"Error reading sensor: {e}")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

通过这些示例,开发者可以轻松将CircuitPython与Adafruit IO和其他物联网云服务平台集成,实现物联网设备的数据传输和监控。

3. CoAP(Constrained Application Protocol)
3.1 CoAP协议概述

CoAP是一种专为受限环境下的物联网设备设计的应用层协议,具有轻量级、简单和高效的特点。它基于RESTful架构,适用于资源受限设备的通信需求。

3.2 CoAP与MQTT的比较

CoAP和MQTT都是为物联网设计的通信协议,但它们在架构和应用场景上有所不同。CoAP更注重在资源受限设备上进行简单、有效的通信,而MQTT更适用于设备之间的发布-订阅模型。

3.3 在物联网中使用CoAP的场景
# 示例代码:使用aiocoap库实现CoAP客户端

import asyncio
from aiocoap import Context, Message

async def coap\_client():
    context = await Context.create_client_context()

    request = Message(code=aiocoap.GET, uri="coap://[::1]/hello")
    
    try:
        response = await context.request(request).response
        print(f"Response from server: {response.payload.decode()}")
    except Exception as e:
        print(f"Error: {e}")

asyncio.run(coap_client())

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
3.4 CoAP的观察(Observe)机制

CoAP的观察机制允许客户端注册对特定资源的观察,以便在资源状态发生更改时即时收到通知。这对于实时监控和基于事件的应用非常有用。

以下是一个简单的CoAP观察机制的示例,其中客户端订阅了服务器上的温度传感器资源:

# 示例代码:使用aiocoap库实现CoAP观察机制的客户端

import asyncio
from aiocoap import Context, Message, OBSERVE

async def coap\_observe\_client():
    context = await Context.create_client_context()

    request = Message(code=aiocoap.GET, uri="coap://[::1]/temperature", observe=0)

    observation_cancelled = asyncio.Event()

    async def observe\_callback(response):
        print(f"Observed: {response.payload.decode()}")
        if response.code.is_successful():
            print(f"Temperature: {response.payload.decode()} °C")
        elif response.code.is_error():
            print(f"Error: {response.payload.decode()}")
            observation_cancelled.set()

    request.observation.register_callback(observe_callback)
    
    try:
        observation_future = asyncio.ensure_future(context.request(request).response)
        await observation_cancelled.wait()
        observation_future.cancel()
    except Exception as e:
        print(f"Error: {e}")

asyncio.run(coap_observe_client())

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

在这个例子中,当服务器上的温度传感器资源发生变化时,客户端将立即收到通知,以便及时更新温度数据。

3.5 CoAP的分块传输

CoAP允许对大型资源进行分块传输,这对于资源受限的设备和低带宽网络非常有用。以下是一个简单的分块传输示例:

# 示例代码:使用aiocoap库实现CoAP分块传输的客户端

import asyncio
from aiocoap import Context, Message

async def coap\_block\_transfer\_client():
    context = await Context.create_client_context()

    request = Message(code=aiocoap.GET, uri="coap://[::1]/large\_resource")

    try:
        response = await context.request(request).response
        print(f"Received large resource: {response.payload.decode()}")
    except Exception as e:
        print(f"Error: {e}")

asyncio.run(coap_block_transfer_client())

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

在这个例子中,客户端请求服务器上的大型资源,并通过分块传输方式逐步接收数据,确保在资源受限环境中有效地传输大型数据。

这些CoAP的高级特性使其成为物联网设备之间进行轻量级、高效通信的理想选择。

4. Micropython
4.1 Micropython概述

Micropython是一种精简的Python编程语言实现,专为嵌入式系统设计。它在物联网设备上提供了Python语法,使得开发者可以使用Python轻松地控制和编程嵌入式硬件。

4.2 在嵌入式设备上的应用
# 示例代码:使用Micropython控制LED

from machine import Pin
import time

led = Pin(2, Pin.OUT)

while True:
    led.value(not led.value())
    time.sleep(1)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
4.3 与CircuitPython的区别与联系

Micropython和CircuitPython都是为嵌入式系统设计的Python实现,但它们有一些区别,例如支持的硬件平台和库的不同。CircuitPython更注重与Adafruit硬件的兼容性,而Micropython更通用。

4.4 Micropython与物联网协议的集成

Micropython通过支持不同的网络库和物联网协议,使得开发者可以将其嵌入式设备轻松连接到物联网。以下是一个使用urequests库实现简单HTTP GET请求的示例:

# 示例代码:使用Micropython进行简单的HTTP GET请求

import urequests
import time

while True:
    try:
        response = urequests.get("https://api.example.com/data")
        print("Response:", response.text)
        response.close()
    except Exception as e:
        print(f"Error: {e}")

    time.sleep(60)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

这个示例演示了如何在嵌入式设备上使用Micropython进行HTTP GET请求,以获取远程服务器上的数据。

4.5 Micropython与物联网云服务的整合

Micropython可以通过相应的库与物联网云服务集成,实现设备数据的上传和远程控制。以下是一个使用umqtt.simple库实现MQTT通信的简单示例:

# 示例代码:使用Micropython进行简单的MQTT通信

from umqtt.simple import MQTTClient
import time

def on\_message(topic, msg):
    print(f"Received message: {msg} on topic: {topic}")

# 替换以下信息为实际MQTT代理信息
mqtt_broker = "mqtt.eclipse.org"
mqtt_port = 1883
mqtt_user = "your\_username"
mqtt_password = "your\_password"

client = MQTTClient("micropython\_device", mqtt_broker, user=mqtt_user, password=mqtt_password)
client.set_callback(on_message)
client.connect()

# 订阅主题
client.subscribe(b"iot/topic")

while True:
    # 发布消息
    client.publish(b"iot/topic", b"Hello, MQTT from Micropython!")
    client.check_msg()  # 检查是否有新消息
    time.sleep(10)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

这个示例展示了如何在Micropython设备上使用MQTT进行消息的发布和订阅,实现与物联网云服务的连接。

通过Micropython的灵活性,开发者可以将其应用于各种物联网场景,实现嵌入式设备与云服务的无缝通信。

5. Blynk
5.1 Blynk平台简介

Blynk是一种用于物联网应用的云平台,它提供了易于使用的移动应用和云服务,使得用户可以轻松地控制和监控物联网设备。

5.2 使用Blynk进行远程物联网设备控制
# 示例代码:使用Blynk库控制LED

import BlynkLib

BLYNK_AUTH = 'YourAuthToken'
blynk = BlynkLib.Blynk(BLYNK_AUTH)

@blynk.VIRTUAL\_WRITE(1)
def v1\_write\_handler(value):
    if int(value[0]) == 1:
        # Turn on the LED
        print("LED ON")
    else:
        # Turn off the LED
        print("LED OFF")

while True:
    blynk.run()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
5.3 Blynk与其他物联网平台的集成

Blynk可以与其他物联网平台集成,例如与MQTT协议结合,以实现更复杂的物联网应用场景。

5.4 Blynk与MQTT的集成

Blynk与MQTT的集成可以通过Blynk的Bridge Widget实现,将Blynk设备连接到MQTT代理。以下是一个简单的示例,演示如何使用Blynk和MQTT协议共同工作:

# 示例代码:使用Blynk和MQTT集成

import BlynkLib
import paho.mqtt.client as mqtt

BLYNK_AUTH = 'YourAuthToken'
blynk = BlynkLib.Blynk(BLYNK_AUTH)

mqtt_broker = "mqtt.eclipse.org"
mqtt_port = 1883
mqtt_user = "your\_username"
mqtt_password = "your\_password"

mqtt_client = mqtt.Client()

@blynk.VIRTUAL\_WRITE(1)
def v1\_write\_handler(value):
    if int(value[0]) == 1:
        # Turn on the LED
        print("LED ON")
        # Publish message to MQTT topic
        mqtt_client.publish("iot/led", "on")
    else:
        # Turn off the LED
        print("LED OFF")
        # Publish message to MQTT topic
        mqtt_client.publish("iot/led", "off")

@mqtt\_client.on\_connect()
def on\_connect(client, userdata, flags, rc):
    print(f"Connected to MQTT broker with result code {rc}")
    client.subscribe("iot/led")

@mqtt\_client.on\_message()
def on\_message(client, userdata, msg):
    print(f"Received message: {msg.payload.decode()} on topic: {msg.topic}")
    # Update Blynk LED status based on MQTT message
    if msg.payload.decode() == "on":
        blynk.virtual_write(1, 1)
    elif msg.payload.decode() == "off":
        blynk.virtual_write(1, 0)

# 替换以下信息为实际MQTT代理信息
mqtt_client.username_pw_set(username=mqtt_user, password=mqtt_password)
mqtt_client.connect(mqtt_broker, mqtt_port, 60)

while True:
    blynk.run()
    mqtt_client.loop()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

这个示例演示了如何使用Blynk和MQTT实现远程LED控制。Blynk通过虚拟引脚(Virtual Pin)接收用户的控制输入,然后通过MQTT将控制指令发送到物联网设备。同时,物联网设备订阅MQTT主题以接收来自远程的指令并更新Blynk应用中的LED状态。通过这种方式,Blynk和MQTT可以协同工作,实现更灵活、强大的物联网应用。

6. Zerynth
6.1 Zerynth的特点

Zerynth是一种支持Python的嵌入式开发平台,它提供了丰富的库和工具,使得开发者可以在嵌入式系统上使用Python进行开发。

6.2 在物联网中的应用场景
# 示例代码:使用Zerynth控制温湿度传感器

import streams
from wireless import wifi
from bosch.bme280 import bme280

streams.serial()

# Connect to Wi-Fi
wifi_driver = wifi()
wifi_driver.connect("YourSSID", pwd="YourPassword")

# Initialize BME280 sensor
sensor = bme280.BME280(I2C0)

while True:
    temperature, pressure, humidity = sensor.read_all_data()
    print(f"Temperature: {temperature}°C, Pressure: {pressure}hPa, Humidity: {humidity}%")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
6.3 与其他物联网框架的比较

Zerynth与其他物联网框架的比较可包括其支持的硬件平台、开发工具的特点等方面,以帮助开发者选择适合其项目的物联网开发平台。

6.4 Zerynth与AWS IoT的集成

Zerynth提供了与AWS IoT的集成,使得开发者可以轻松将其Zerynth设备连接到AWS云服务。以下是一个简单的示例,演示如何使用Zerynth与AWS IoT进行通信:

# 示例代码:使用Zerynth与AWS IoT进行通信

import streams
from aws.iot import iot

streams.serial()

# 替换以下信息为实际AWS IoT设备信息
device_key = "YourDeviceKey"
device_secret = "YourDeviceSecret"
root_ca = "YourRootCA.pem"
client_cert = "YourDeviceCert.pem.crt"
client_key = "YourDeviceCert.key"

# 连接到AWS IoT
aws_iot = iot.AWSIoT(device_key, device_secret, root_ca, client_cert, client_key)
aws_iot.connect()

# 发送消息到AWS IoT主题
message = "Hello from Zerynth!"
aws_iot.publish("iot/topic", message)

# 订阅AWS IoT主题并处理接收到的消息
def on\_message(topic, message):
    print(f"Received message: {message} on topic: {topic}")

aws_iot.subscribe("iot/topic", on_message)

while True:
    pass

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

通过这个示例,Zerynth设备可以连接到AWS IoT,并实现消息的发布和订阅。Zerynth的集成性使其成为与各种云服务平台交互的强大工具。

6.5 Zerynth与LoRaWAN的集成

Zerynth还支持与LoRaWAN网络的集成,使得开发者可以在LoRaWAN网络中部署和管理其Zerynth设备。以下是一个简单的LoRaWAN示例:

# 示例代码:使用Zerynth与LoRaWAN进行通信

import streams
from wireless import lorawan

streams.serial()

# 替换以下信息为实际LoRaWAN设备信息
dev_eui = "YourDevEUI"
app_eui = "YourAppEUI"
app_key = "YourAppKey"

# 连接到LoRaWAN网络
lorawan.connect(dev_eui, app_eui, app_key, lora=lorawan.EU868)

while True:
    lorawan.send(bytes([1, 2, 3, 4]))
    print("Message sent!")
    sleep(60000)  # 等待1分钟再发送下一条消息

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

通过这个示例,Zerynth设备可以通过LoRaWAN网络发送数据,实现与远程LoRaWAN服务器的通信。Zerynth的灵活性使其适用于多种不同的物联网应用场景。

7. ThingSpeak

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数嵌入式工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年嵌入式&物联网开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上嵌入式&物联网开发知识点,真正体系化!

img

img

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以+V:Vip1104z获取!!! (备注:嵌入式)

img

最后

资料整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~

你的支持,我的动力;祝各位前程似锦,offer不断,步步高升!!!

现在。**

深知大多数嵌入式工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年嵌入式&物联网开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

[外链图片转存中…(img-8xby5X2u-1712321663443)]

[外链图片转存中…(img-Dt09Ztoy-1712321663446)]

[外链图片转存中…(img-VNH14Cvm-1712321663447)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上嵌入式&物联网开发知识点,真正体系化!

[外链图片转存中…(img-HkWR3Npg-1712321663447)]

[外链图片转存中…(img-Wa8hTpKn-1712321663448)]

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以+V:Vip1104z获取!!! (备注:嵌入式)

img

最后

资料整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~

你的支持,我的动力;祝各位前程似锦,offer不断,步步高升!!!

更多资料点击此处获qu!!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/897707
推荐阅读
相关标签
  

闽ICP备14008679号